International journal of stem cells最新文献

筛选
英文 中文
Application of Deep Neural Networks in the Manufacturing Process of Mesenchymal Stem Cells Therapeutics. 深度神经网络在间充质干细胞疗法制造过程中的应用。
IF 2.5 4区 医学
International journal of stem cells Pub Date : 2024-09-26 DOI: 10.15283/ijsc24070
Dat Ngo, Jeongmin Lee, Sun Jae Kwon, Jin Hun Park, Baek Hwan Cho, Jong Wook Chang
{"title":"Application of Deep Neural Networks in the Manufacturing Process of Mesenchymal Stem Cells Therapeutics.","authors":"Dat Ngo, Jeongmin Lee, Sun Jae Kwon, Jin Hun Park, Baek Hwan Cho, Jong Wook Chang","doi":"10.15283/ijsc24070","DOIUrl":"https://doi.org/10.15283/ijsc24070","url":null,"abstract":"<p><p>Current image-based analysis methods for monitoring cell confluency and status depend on individual interpretations, which can lead to wide variations in the quality of cell therapeutics. To overcome these limitations, images of mesenchymal stem cells cultured adherently in various types of culture vessels were captured and analyzed using a deep neural network. Among the various deep learning methods, a classification and detection algorithm was selected to verify cell confluency and status. We confirmed that the image classification algorithm demonstrates significant accuracy for both single- and multistack images. Abnormal cells could be detected exclusively in single-stack images, as multistack culture was performed only when abnormal cells were absent in the single-stack culture. This study is the first to analyze cell images based on a deep learning method that directly impacts yield and quality, which are important product parameters in stem cell therapeutics.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "In Vivo Stem Cell Imaging Principles and Applications". 体内干细胞成像原理与应用》更正。
IF 2.3 4区 医学
International journal of stem cells Pub Date : 2024-09-10 DOI: 10.15283/23045c
Seongje Hong,Dong-Sung Lee,Geun-Woo Bae,Juhyeong Jeon,Hak Kyun Kim,Siyeon Rhee,Kyung Oh Jung
{"title":"Corrigendum to \"In Vivo Stem Cell Imaging Principles and Applications\".","authors":"Seongje Hong,Dong-Sung Lee,Geun-Woo Bae,Juhyeong Jeon,Hak Kyun Kim,Siyeon Rhee,Kyung Oh Jung","doi":"10.15283/23045c","DOIUrl":"https://doi.org/10.15283/23045c","url":null,"abstract":"","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Endothelial Cell Differentiation Protocol Using Bioactive Lipid O-Cyclic Phytosphingosine-1-Phosphate in Human Embryonic Stem Cells. 在人胚胎干细胞中使用生物活性脂质 O-Cyclic Phytosphingosine-1-Phosphate 的高效内皮细胞分化方案。
IF 2.3 4区 医学
International journal of stem cells Pub Date : 2024-09-10 DOI: 10.15283/ijsc24068
Ki-Sang Jo,Won-Jun Jo,Ainsley Mike Antao,Janardhan Keshav Karapurkar,Young Jun Park,Myeong-Jun Choi,Suresh Ramakrishna,Kye-Seong Kim
{"title":"An Efficient Endothelial Cell Differentiation Protocol Using Bioactive Lipid O-Cyclic Phytosphingosine-1-Phosphate in Human Embryonic Stem Cells.","authors":"Ki-Sang Jo,Won-Jun Jo,Ainsley Mike Antao,Janardhan Keshav Karapurkar,Young Jun Park,Myeong-Jun Choi,Suresh Ramakrishna,Kye-Seong Kim","doi":"10.15283/ijsc24068","DOIUrl":"https://doi.org/10.15283/ijsc24068","url":null,"abstract":"Bioactive lipids like sphingosine-1-phosphate (S1P) and lysophosphatidic acid have gained significant attention as signaling molecules with regulatory roles in stem cell proliferation and differentiation. The novel chemically synthesized sphingosine metabolite O-cyclic phytosphingosine-1-phosphate (cP1P) is derived from phytosphingosine-1-phosphate (P1P) and shares structural similarities with S1P. Previously, the role of cP1P in regulating ALK3/BMPR signaling during cardiomyocyte differentiation from human embryonic stem cells (hESCs) was demonstrated. In this study, the applicability of cP1P for endothelial cells (ECs) differentiation from hESCs was investigated an efficient method to obtain a high yield of functional ECs over several passages was standardized. The ECs derived from hESCs showed cellular and molecular characteristics similar to the native ECs. Thus, the results of this study open avenues for further research into cP1P-based stem cell differentiation for regenerative therapies.","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of an Isogenic Hereditary Hemorrhagic Telangiectasia Model via Prime Editing in Human Induced Pluripotent Stem Cells. 通过在人类诱导多能干细胞中进行主基因编辑,生成异源遗传性出血性远端血管扩张症模型。
IF 2.5 4区 医学
International journal of stem cells Pub Date : 2024-09-06 DOI: 10.15283/ijsc24084
Min Woo Kim, Kyu Sik Jeong, Jin Kim, Seul-Gi Lee, C-Yoon Kim, Hyung Min Chung
{"title":"Generation of an Isogenic Hereditary Hemorrhagic Telangiectasia Model via Prime Editing in Human Induced Pluripotent Stem Cells.","authors":"Min Woo Kim, Kyu Sik Jeong, Jin Kim, Seul-Gi Lee, C-Yoon Kim, Hyung Min Chung","doi":"10.15283/ijsc24084","DOIUrl":"https://doi.org/10.15283/ijsc24084","url":null,"abstract":"<p><p>Prime editing (PE) is a recently developed genome-editing technique that enables versatile editing. Despite its flexibility and potential, applying PE in human induced pluripotent stem cells (hiPSCs) has not been extensively addressed. Genetic disease models using patient-derived hiPSCs have been used to study mechanisms and drug efficacy. However, genetic differences between patient and control cells have been attributed to the inaccuracy of the disease model, highlighting the significance of isogenic hiPSC models. Hereditary hemorrhagic telangiectasia 1 (HHT1) is a genetic disorder caused by an autosomal dominant mutation in endoglin (<i>ENG</i>). Although previous HHT models using mice and HUVEC have been used, these models did not sufficiently elucidate the relationship between the genotype and disease phenotype in HHT, demanding more clinically relevant models that reflect human genetics. Therefore, in this study, we used PE to propose a method for establishing an isogenic hiPSC line. Clinically reported target mutation in <i>ENG</i> was selected, and a strategy for PE was designed. After cloning the <i>ENG</i>ineered PE guide RNA, hiPSCs were nucleofected along with PEmax and hMLH1dn plasmids. As a result, hiPSC clones with the intended mutation were obtained, which showed no changes in pluripotency or genetic integrity. Furthermore, introducing the <i>ENG</i> mutation increased the expression of proangiogenic markers during endothelial organoid differentiation. Consequently, our results suggest the potential of PE as a toolkit for establishing isogenic lines, enabling disease modeling based on hiPSC-derived disease-related cells or organoids. This approach is expected to stimulate mechanistic and therapeutic studies on genetic diseases.a.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Endometrial Regenerative Cells for Neurological Disorders: Hype or Hope? 人类子宫内膜再生细胞治疗神经系统疾病:炒作还是希望?
IF 2.5 4区 医学
International journal of stem cells Pub Date : 2024-08-30 Epub Date: 2024-01-08 DOI: 10.15283/ijsc23091
Javad Momeni, Elnaz Naserzadeh, Ali Sepehrinezhad, Rezan Ashayeri Ahmadabad, Sajad Sahab Negah
{"title":"Human Endometrial Regenerative Cells for Neurological Disorders: Hype or Hope?","authors":"Javad Momeni, Elnaz Naserzadeh, Ali Sepehrinezhad, Rezan Ashayeri Ahmadabad, Sajad Sahab Negah","doi":"10.15283/ijsc23091","DOIUrl":"10.15283/ijsc23091","url":null,"abstract":"<p><p>Despite enormous efforts, no effective medication has been found to significantly halt or even slow the progression of neurological diseases, such as acquired (e.g., traumatic brain injury, spinal cord injury, etc.) and chronic (e.g., Parkinson's disease, Alzheimer's disease, etc.) central nervous system disorders. So, researchers are looking for alternative therapeutic modalities to manage the disease's symptoms and stop it from worsening. Concerning disease-modifying capabilities, stem cell therapy has emerged as an expanding domain. Among different types of stem cells, human endometrial regenerative cells have excellent regenerative properties, making them suitable for regenerative medicine. They have the potential for self-renewal and differentiation into three types of stem cells: epithelial stem cells, endothelial side population stem cells, and mesenchymal stem cells (MSCs). ERCs can be isolated from endometrial biopsy and menstrual blood samples. However, there is no comprehensive evidence on the effects of ERCs on neurological disorders. Hence, we initially explore the traits of these specific stem cells in this analysis, followed by an emphasis on their therapeutic potential in treating neurological disorders.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139377593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Exosomes from Mesenchymal Stem Cells in Spinal Cord Injury: A Systematic Review. 间充质干细胞外泌体在脊髓损伤中的作用:系统综述。
IF 2.5 4区 医学
International journal of stem cells Pub Date : 2024-08-30 Epub Date: 2023-11-29 DOI: 10.15283/ijsc23092
Haoyu Wang, Chunxia Zhao, Qingqing Rong, Jinghe Cao, Hongyi Chen, Ruolin Li, Bin Zhang, Peng Xu
{"title":"The Role of Exosomes from Mesenchymal Stem Cells in Spinal Cord Injury: A Systematic Review.","authors":"Haoyu Wang, Chunxia Zhao, Qingqing Rong, Jinghe Cao, Hongyi Chen, Ruolin Li, Bin Zhang, Peng Xu","doi":"10.15283/ijsc23092","DOIUrl":"10.15283/ijsc23092","url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a serious nervous system disease that usually leads to the impairment of the motor, sensory, and autonomic nervous functions of the spinal cord, and it places a heavy burden on families and healthcare systems every year. Due to the complex pathophysiological mechanism of SCI and the poor ability of neurons to regenerate, the current treatment scheme has very limited effects on the recovery of spinal cord function. In addition, due to their unique advantages, exosomes can be used as carriers for cargo transport. In recent years, some studies have confirmed that treatment with mesenchymal stem cells (MSCs) can promote the recovery of SCI nerve function. The therapeutic effect of MSCs is mainly related to exosomes secreted by MSCs, and exosomes may have great potential in SCI therapy. In this review, we summarized the repair mechanism of mesenchymal stem cells-derived exosomes (MSCs-Exos) in SCI treatment and discussed the microRNAs related to SCI treatment based on MSCs-Exos and their mechanism of action, which is helpful to further understand the role of exosomes in SCI.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138451460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishing Three-Dimensional Explant Culture of Human Dental Pulp Tissue. 建立人类牙髓组织的三维外植体培养。
IF 2.5 4区 医学
International journal of stem cells Pub Date : 2024-08-30 Epub Date: 2024-07-12 DOI: 10.15283/ijsc23105
Eun Jin Seo, Soyoung Park, Eungyung Lee, Yang Hoon Huh, Ye Eun Ha, Gabor J Tigyi, Taesung Jeong, Il Ho Jang, Jonghyun Shin
{"title":"Establishing Three-Dimensional Explant Culture of Human Dental Pulp Tissue.","authors":"Eun Jin Seo, Soyoung Park, Eungyung Lee, Yang Hoon Huh, Ye Eun Ha, Gabor J Tigyi, Taesung Jeong, Il Ho Jang, Jonghyun Shin","doi":"10.15283/ijsc23105","DOIUrl":"10.15283/ijsc23105","url":null,"abstract":"<p><p>Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and <i>in situ</i> development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutathione Dynamics in the Tumor Microenvironment: A Potential Target of Cancer Stem Cells and T Cells. 肿瘤微环境中的谷胱甘肽动态:癌症干细胞和 T 细胞的潜在靶点。
IF 2.5 4区 医学
International journal of stem cells Pub Date : 2024-08-30 Epub Date: 2024-06-26 DOI: 10.15283/ijsc24060
Youngjun Park, Eui Man Jeong
{"title":"Glutathione Dynamics in the Tumor Microenvironment: A Potential Target of Cancer Stem Cells and T Cells.","authors":"Youngjun Park, Eui Man Jeong","doi":"10.15283/ijsc24060","DOIUrl":"10.15283/ijsc24060","url":null,"abstract":"<p><p>Glutathione (GSH), the main cellular antioxidant, dynamically influences tumor growth, metastasis, and resistance to therapy in the tumor microenvironment (TME), which comprises cancer cells, immune cells, stromal cells, and non-cellular components, including the extracellular matrix, metabolites, hypoxia, and acidity. Cancer stem cells (CSCs) and T cells are minor but significant cell subsets of the TME. GSH dynamics influences the fate of CSCs and T cells. Here, we explored GSH dynamics in CSCs and T cells within the TME, as well as therapeutic approaches that could target these dynamics.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytoplasmatic Localization of Six1 in Male Testis and Spermatogonial Stem Cells. 男性睾丸和精原干细胞中 Six1 的细胞质定位
IF 2.5 4区 医学
International journal of stem cells Pub Date : 2024-08-30 Epub Date: 2024-01-16 DOI: 10.15283/ijsc23093
Mingming Qin, Linzi Ma, Wenjing Du, Dingyao Chen, Guoqun Luo, Zhaoting Liu
{"title":"Cytoplasmatic Localization of Six1 in Male Testis and Spermatogonial Stem Cells.","authors":"Mingming Qin, Linzi Ma, Wenjing Du, Dingyao Chen, Guoqun Luo, Zhaoting Liu","doi":"10.15283/ijsc23093","DOIUrl":"10.15283/ijsc23093","url":null,"abstract":"<p><p>Sine oculis homeobox 1 (Six1) is an important factor for embryonic development and carcinoma malignancy. However, the localization of Six1 varies due to protein size and cell types in different organs. In this study, we focus on the expression and localization of Six1 in male reproductive organ via bioinformatics analysis and immunofluorescent detection. The potential interacted proteins with Six1 were also predicted by protein-protein interactions (PPIs) and Enrichr analysis. Bioinformatic data from The Cancer Genome Atlas and Genotype-Tissue Expression project databases showed that <i>SIX1</i> was highly expressed in normal human testis, but low expressed in the testicular germ cell tumor sample. Human Protein Atlas examination verified that SIX1 level was higher in normal than that in cancer samples. The sub-localization of SIX1 in different reproductive tissues varies but specifically in the cytoplasm and membrane in testicular cells. In mouse cells, single cell RNA-sequencing data analysis indicated that <i>Six1</i> expression level was higher in mouse spermatogonial stem cells (mSSCs) and differentiating spermatogonial than in other somatic cells. Immunofluorescence staining showed the cytoplasmic localization of Six1 in mouse testis and mSSCs. Further PPIs and Enrichr examination showed the potential interaction of Six1 with bone morphogenetic protein 4 (Bmp4) and catenin Beta-1 (CtnnB1) and stem cell signal pathways. Cytoplasmic localization of Six1 in male testis and mSSCs was probably associated with stem cell related proteins Bmp4 and CtnnB1 for stem cell development.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming. 探索肠道再生的全貌:静止调节和胎儿重编程聚焦。
IF 2.5 4区 医学
International journal of stem cells Pub Date : 2024-08-30 Epub Date: 2024-01-25 DOI: 10.15283/ijsc23176
Su-Jeong Oh, Yoojin Seo, Hyung-Sik Kim
{"title":"Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming.","authors":"Su-Jeong Oh, Yoojin Seo, Hyung-Sik Kim","doi":"10.15283/ijsc23176","DOIUrl":"10.15283/ijsc23176","url":null,"abstract":"<p><p>Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with <i>in vitro</i> organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信