{"title":"Article commentary on 'Microdosimetric and radiobiological effects of gold nanoparticles at therapeutic radiation energies' [T.M. Gray et al., IJRB 2023, 99(2), 308-317].","authors":"Hans Rabus, Miriam Schwarze, Leo Thomas","doi":"10.1080/09553002.2023.2245468","DOIUrl":"10.1080/09553002.2023.2245468","url":null,"abstract":"","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":" ","pages":"7-17"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10431773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iman M Ahmad, Lisa Bartenhagen, Kimberly Michael, Maher Y Abdalla
{"title":"Redox dysregulation in imaging professionals occupationally exposed to ionizing and non-ionizing radiation.","authors":"Iman M Ahmad, Lisa Bartenhagen, Kimberly Michael, Maher Y Abdalla","doi":"10.1080/09553002.2023.2258194","DOIUrl":"10.1080/09553002.2023.2258194","url":null,"abstract":"<p><p><b>Purpose:</b> Imaging professionals are occupationally exposed to chronic ionizing radiation (IR) and non-ionizing radiation (NIR). This study aimed to investigate the influence of occupational radiation exposure on oxidative stress and antioxidant levels based on blood biomarkers in different hospital imaging professional groups.<b>Materials and methods:</b> The study groups included 66 imaging professionals occupationally exposed to IR (<i>n</i> = 58, 43 diagnostic radiography (G1), seven nuclear medicine (G2), eight radiation therapy (G3)), and NIR (<i>n</i> = 8, ultrasound imaging (G4)) and 60 non-exposed controls. Blood levels of superoxide (O<sub>2</sub><sup>•-</sup>) as an index of oxidative stress, and the antioxidant activities of superoxide dismutase (SOD), glutathione ratio (GSH/GSSG), and catalase (CAT) were measured.<b>Results:</b> The blood values of O<sub>2</sub><sup>•-</sup>, SOD, and CAT were significantly higher in imaging professionals occupationally exposed to radiation than in the control group (<i>p</i> < .05), while a significant decrease in the ratio of GSH/GSSG was observed (<i>p</i> < .05). The results from the NIR group were significantly higher compared to IR group.<b>Conclusions:</b> Based on these results, chronic exposure to radiation (IR and NIR) is associated with redox dysregulation that may result in damages to cellular biomolecules including lipids, proteins and DNA. Further studies are needed to determine the impact of redox dysregulation and the need for periodic examination among imaging professionals occupationally exposed to IR and NIR.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":" ","pages":"190-196"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10221602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
François Trompier, Larry A DeWerd, Yannick Poirier, Morgane Dos Santos, Ke Sheng, Keith A Kunugi, Thomas A Winters, Andrea L DiCarlo, Merriline Satyamitra
{"title":"Minimum reporting standards should be expected for preclinical radiobiology irradiators and dosimetry in the published literature.","authors":"François Trompier, Larry A DeWerd, Yannick Poirier, Morgane Dos Santos, Ke Sheng, Keith A Kunugi, Thomas A Winters, Andrea L DiCarlo, Merriline Satyamitra","doi":"10.1080/09553002.2023.2250848","DOIUrl":"10.1080/09553002.2023.2250848","url":null,"abstract":"<p><p>The cornerstones of science advancement are rigor in performing scientific research, reproducibility of research findings and unbiased reporting of design and results of the experiments. For radiation research, this requires rigor in describing experimental details as well as the irradiation protocols for accurate, precise and reproducible dosimetry. Most institutions conducting radiation biology research in in vitro or animal models do not have describe experimental irradiation protocols in sufficient details to allow for balanced review of their publication nor for other investigators to replicate published experiments. The need to increase and improve dosimetry standards, traceability to National Institute of Standards and Technology (NIST) standard beamlines, and to provide dosimetry harmonization within the radiation biology community has been noted for over a decade both within the United States and France. To address this requirement subject matter experts have outlined minimum reporting standards that should be included in published literature for preclinical irradiators and dosimetry.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":" ","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841746/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10555270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yining Zhang, Tao Yan, Wei Mo, Bin Song, Yuehua Zhang, Fenghao Geng, Zhimin Hu, Daojiang Yu, Shuyu Zhang
{"title":"Altered bile acid metabolism in skin tissues in response to ionizing radiation: deoxycholic acid (DCA) as a novel treatment for radiogenic skin injury.","authors":"Yining Zhang, Tao Yan, Wei Mo, Bin Song, Yuehua Zhang, Fenghao Geng, Zhimin Hu, Daojiang Yu, Shuyu Zhang","doi":"10.1080/09553002.2023.2245461","DOIUrl":"10.1080/09553002.2023.2245461","url":null,"abstract":"<p><strong>Objective: </strong>Radiogenic skin injury (RSI) is a common complication during cancer radiotherapy or accidental exposure to radiation. The aim of this study is to investigate the metabolism of bile acids (BAs) and their derivatives during RSI.</p><p><strong>Methods: </strong>Rat skin tissues were irradiated by an X-ray linear accelerator. The quantification of BAs and their derivatives were performed by liquid chromatography-mass spectrometry (LC-MS)-based quantitative analysis. Key enzymes in BA biosynthesis were analyzed from single-cell RNA sequencing (scRNA-Seq) data of RSI in the human patient and animal models. The <i>in vivo</i> radioprotective effect of deoxycholic acid (DCA) was detected in irradiated SD rats.</p><p><strong>Results: </strong>Twelve BA metabolites showed significant differences during the progression of RSI. Among them, the levels of cholic acid (CA), DCA, muricholic acid (MCA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), glycohyodeoxycholic acid (GHCA), 12-ketolithocholic acid (12-ketoLCA) and ursodeoxycholic acid (UDCA) were significantly elevated in irradiated skin, whereas lithocholic acid (LCA), tauro-β-muricholic acid (Tβ-MCA) and taurocholic acid (TCA) were significantly decreased. Additionally, the results of scRNA-Seq indicated that genes involved in 7a-hydroxylation process, the first step in BA synthesis, showed pronounced alterations in skin fibroblasts or keratinocytes. The alternative pathway of BA synthesis is more actively altered than the classical pathway after ionizing radiation. In the model of rat radiogenic skin damage, DCA promoted wound healing and attenuated epidermal hyperplasia.</p><p><strong>Conclusions: </strong>Ionizing radiation modulates the metabolism of BAs. DCA is a prospective therapeutic agent for the treatment of RSI.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":" ","pages":"87-98"},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10056675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reid D Landes, Chenghui Li, Vijayalakshmi Sridharan, Carmen Bergom, Marjan Boerma
{"title":"A pooled analysis of nine studies in one institution to assess effects of whole heart irradiation in rat models.","authors":"Reid D Landes, Chenghui Li, Vijayalakshmi Sridharan, Carmen Bergom, Marjan Boerma","doi":"10.1080/09553002.2023.2242937","DOIUrl":"10.1080/09553002.2023.2242937","url":null,"abstract":"<p><strong>Purpose: </strong>Over the years, animal models of local heart irradiation have provided insight into mechanisms of and treatments for radiation-induced heart disease in human populations. However, it is not completely clear which manifestations of radiation injury are most commonly seen after whole heart irradiation, and whether certain biological factors impact experimental results. Combining 9 homogeneous studies in rat models of whole heart irradiation from one laboratory, we sought to identify experimental and/or biological factors that impact heart outcomes. We evaluated the usefulness of including (1) heart rate and (2) bodyweight as covariates when analyzing biological parameters, and (3) we determined which echocardiography, histological, and immunohistochemistry parameters are most susceptible to radiation effects. Finally, (4) as an educational example, we illustrate a hypothetical sample size calculation for a study design commonly used in evaluating radiation modifiers, using the pooled estimates from the 9 rat studies only for context. The results may assist investigators in the design and analyses of pre-clinical studies of whole heart irradiation.</p><p><strong>Materials and methods: </strong>We made use of data from 9 rat studies from our labs, 8 published elsewhere in 2008-2017, and one unpublished study. Echocardiography, histological, and immunohistochemical parameters were collected from these studies. Using mixed effects analysis of covariance models, we estimated slopes for heart rate and bodyweight and estimated the radiation effect on each of the parameters.</p><p><strong>Results: </strong>Bodyweight was related to most echocardiography parameters, and heart rate had an effect on echocardiography parameters related to the diameter of the left ventricle. For some parameters, there was evidence that heart rate and bodyweight relationships with the parameter depended on whether the rats were irradiated. Radiation effects were found in systolic measures of echocardiography parameters related to the diameter of the left ventricle, with ejection fraction and fractional shortening, with atrial wall thickness, and with histological measures of capillary density, collagen deposition, and mast cells infiltration in the heart.</p><p><strong>Conclusion: </strong>Accounting for bodyweight, as well as heart rate, in analyses of echocardiography parameters should reduce variability in estimated radiation effects. Several echocardiography and histological parameters were particularly susceptible to whole heart irradiation, showing robust effects compared to sham-irradiation. Lastly, we provide an example approach for a sample size calculation that will contribute to a rigorous study design and reproducibility in experiments studying radiation modifiers.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":" ","pages":"28-36"},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10029585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ionizing radiation exposure effects across multiple generations: evidence and lessons from non-human biota","authors":"Shayenthiran Sreetharan, Sandrine Frelon, Nele Horemans, Patrick Laloi, Sisko Salomaa, Christelle Adam-Guillermin","doi":"10.1080/09553002.2023.2281512","DOIUrl":"https://doi.org/10.1080/09553002.2023.2281512","url":null,"abstract":"A Task Group (TG121) of the International Commission on Radiological Protection (ICRP) Committee 1 was launched in 2021 to study the effects of ionizing radiation in offspring and next generations....","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"14 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138569826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into radiation carcinogenesis based on dose-rate effects in tissue stem cells.","authors":"Kensuke Otsuka, Toshiyasu Iwasaki","doi":"10.1080/09553002.2023.2194398","DOIUrl":"10.1080/09553002.2023.2194398","url":null,"abstract":"<p><strong>Purpose: </strong>Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells.</p><p><strong>Methods: </strong>We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation.</p><p><strong>Results: </strong>Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition.</p><p><strong>Conclusions: </strong>We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":" ","pages":"1503-1521"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9229469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An Wang, Zhongyu Shi, Lei Wang, Yan Wang, Xiaoying Chen, Changhao He, Xiaomeng Zhang, Wenhui Xu, Qian Fu, Tieshan Wang, Shujing Zhang, Yushan Gao, Sumin Hu
{"title":"The injuries of spleen and intestinal immune system induced by 2-Gy <sup>60</sup>Co <b>γ</b>-ray whole-body irradiation.","authors":"An Wang, Zhongyu Shi, Lei Wang, Yan Wang, Xiaoying Chen, Changhao He, Xiaomeng Zhang, Wenhui Xu, Qian Fu, Tieshan Wang, Shujing Zhang, Yushan Gao, Sumin Hu","doi":"10.1080/09553002.2022.2094017","DOIUrl":"https://doi.org/10.1080/09553002.2022.2094017","url":null,"abstract":"<p><strong>Purpose: </strong>The aim of the present study was to investigate the injuries of spleen and intestinal immune system induced by 2 Gy <sup>60</sup>Co γ ray in mice.</p><p><strong>Materials and methods: </strong>A total of 120 Balb/c mice were randomly divided into two groups: blank control (Ctrl) and model (IR). The IR mice were exposed to a single dose of total body irradiation (2 Gy, dose rate: 1 Gy/min) and sacrificed on 1st, 3rd, 7th, 14th and 21st day after irradiation. The indicators including general observations and body weight, the changes in peripheral hemogram, spleen index, histopathology examination and lymphocyte subsets of spleen. As well as the count and subsets of lymphocyte in gut-associated lymphoid tissue.</p><p><strong>Results: </strong>Compared with the Ctrl group, the body weight, spleen index, peripheral blood cell and splenocyte amounts, intraepithelial lymphocytes number decreased significantly after exposure, accompanied by a notable decreased count of lymphocytes in Peyer's patch and mesenteric lymph nodes. Moreover, ionizing radiation also broke the balance of CD4+/CD8+ and increased the Treg proportion in spleen, which then triggered immune imbalance and immunosuppression. In general, the spleen injuries occurred on 1st day after exposure, worse on 3rd day, and were relieved on 7th day. The intestinal immune injuries were observed on 1st day, and attenuated on 3rd day. On 21st day after exposure, the spleen volume and index have returned to normal, except for the distribution of lymphocyte subpopulations. Furthermore, all indicators of gut-associated lymphoid tissue, except for mesenteric lymph nodes lymphocyte count, had returned to normal levels on 21st day.</p><p><strong>Conclusion: </strong>In conclusion, our data showed the injuries of spleen and intestinal immune system induced by 2 Gy <sup>60</sup>Co γ ray whole-body irradiation. These findings may provide the bases for further radiation protection in the immunity.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 3","pages":"406-418"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Hong, Xiaoqian Li, Yulan Liu, Wei Mo, Bin Shi, Shigao Chen, Tao Yan, Yuhong Shi, Daojiang Yu, Shuyu Zhang
{"title":"Molecular response of keloids to ionizing radiation: targeting FOXO1 radiosensitizes keloids.","authors":"Min Hong, Xiaoqian Li, Yulan Liu, Wei Mo, Bin Shi, Shigao Chen, Tao Yan, Yuhong Shi, Daojiang Yu, Shuyu Zhang","doi":"10.1080/09553002.2022.2121871","DOIUrl":"https://doi.org/10.1080/09553002.2022.2121871","url":null,"abstract":"<p><strong>Purpose: </strong>Keloids are benign dermal tumors that arise from abnormal wound healing processes following skin lesions. Surgical excision followed by radiotherapy plays an important role in the treatment of keloids. Nevertheless, radioresistance remains a serious impediment to treatment efficacy. Investigation of the molecular response of keloids to radiation may contribute to radiosensitizing strategies.</p><p><strong>Materials and methods: </strong>Primary keloid fibroblasts from human keloids were isolated and irradiated with X-ray. The expression profiles of messenger RNA (mRNA) in nonradiated and irradiated primary keloid fibroblasts were measured by mRNA sequencing analysis. Then, we identified common motifs and corresponding transcription factors of dysregulated mRNAs by using bioinformatic analysis of the proximal promoters. Whereafter, GO and KEGG were used to analyze the functional enrichment of the differentially expressed genes.</p><p><strong>Results: </strong>We found that radiation not only suppressed proliferation but also increased cell senescence of primary keloid fibroblasts. There were 184 mRNAs and 204 mRNAs that showed significant changes in 4 and 8 Gy irradiated primary keloid fibroblasts, respectively. Among them, 8 upregulated and 30 downregulated mRNAs showed consistent alterations in 4 and 8 Gy irradiated primary keloid fibroblasts. More importantly, the xForkhead box O1 (FOXO1) signaling pathway was involved in the irradiation response. Pretreatment with the FOXO1 signaling inhibitor AS1842856 significantly promoted LDH release, apoptosis and senescence of primary keloid fibroblasts following irradiation.</p><p><strong>Conclusion: </strong>Our findings illustrated the molecular changes in human keloid fibroblasts in response to radiation, and FOXO1 pathway inhibition is expected to provide a novel strategy for the radiosensitization of keloids.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 5","pages":"835-844"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas C Wilson, Stephen A Jannetti, Navjot Guru, Nagavarakishore Pillarsetty, Thomas Reiner, Giacomo Pirovano
{"title":"Improved radiosynthesis of <sup>123</sup>I-MAPi, an auger theranostic agent.","authors":"Thomas C Wilson, Stephen A Jannetti, Navjot Guru, Nagavarakishore Pillarsetty, Thomas Reiner, Giacomo Pirovano","doi":"10.1080/09553002.2020.1781283","DOIUrl":"10.1080/09553002.2020.1781283","url":null,"abstract":"<p><strong>Purpose: </strong><sup>123</sup>I-MAPi, a novel PARP1-targeted Auger radiotherapeutic has shown promising results in pre-clinical glioma model. Currently, <sup>123</sup>I-MAPi is synthesized using multistep synthesis that results in modest yields and low molar activities (MA) that limits the ability to translate this technology for human studies where high doses are administered. Therefore, new methods are needed to synthesize <sup>123</sup>I-MAPi in high activity yields (AY) and improved MA to facilitate clinical translation and multicenter trials.</p><p><strong>Materials and methods: </strong><sup>123</sup>I-MAPi was prepared in a single step via <sup>123</sup>I-iododetannylation of the corresponding tributylstannane precursor. In vitro internalization assay, subcellular fractionation and confocal microscopy where used to evaluate the performance of <sup>123</sup>I-MAPi in a small cell lung cancer model.</p><p><strong>Results: </strong><sup>123</sup>I-MAPi was synthesized in a single step from the corresponding stannane precursor in AY of 45 ± 2% and MA of 11.8 ± 4.8 GBq <i>µ</i>mol<sup>-1</sup>. In vitro in LX22 cells showed rapid internalization (5 min) with accumulation found predominantly in the membrane, nucleus and chromatin of the cell as determined by subcellular fractionation.</p><p><strong>Conclusions: </strong>Here, we have developed an improved radiosynthesis of <sup>123</sup>I-MAPi, an Auger theranostic agent. This process was achieved using a single step, <sup>123</sup>I-iododestannylation reaction from the corresponding stannane precursor in good AY and MA. <sup>123</sup>I-MAPi was evaluated in vitro in a small cell lung cancer model with high PARP expression, rapid internalization and high nuclear uptake shown.</p>","PeriodicalId":14261,"journal":{"name":"International Journal of Radiation Biology","volume":"99 1","pages":"70-76"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553002.2020.1781283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10715777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}