{"title":"Supplementation with stigma maydis polysaccharide attenuates autism-like behaviors and improves gut function in valproic acid-induced autism model male rats","authors":"Xiaolei Yang, Hongjie Li, Chao Yang, Jie Ge","doi":"10.1002/jdn.10354","DOIUrl":"10.1002/jdn.10354","url":null,"abstract":"<p>Stigma maydis polysaccharide (SMPS) has regulatory effect on the intestinal microflora and promotes gastrointestinal peristalsis. Children with autism spectrum disorder (ASD) often experience gastrointestinal problems and dysbiosis in their gut microbiota. Our previous study revealed that SMPS interventions had an impact on the gut microbiota of valproic acid (VPA)-induced autism model rats. However, the effects of SMPS on the behavior and gut function of autism model rats remain poorly understood. Therefore, we gave different doses of SMPS intervention in the early stage of autism model rats to observe their developmental conditions and behavior performances. Through histological evaluation and real-time polymerase chain reaction (PCR), integrity of the intestinal structure and the expression of tight junction-related gene <i>Zo-1</i> and <i>Occludin</i> were detected. The results indicated that SMPS intervention improved the physical development, learning and memory impairment, and social performance of autism model rats. Meanwhile, SMPS promoted intestinal peristalsis and restored the integrity of the intestinal structure, reduced the number of inflammatory cells, and increased the expression of the <i>Zo-1</i> and <i>Occludin</i> genes. Furthermore, the expression levels of neurotransmitters (substance P, enkephalin, vasoactive intestinal peptide, and 5-hydroxytryptamine) in the hippocampal tissues were altered after SMPS treatment. In conclusion, SMPS could ameliorate ASD-like phenotypes and gut problems in autism model rats. Collectively, these results provide new evidence for the relationship between the gut-brain axis and ASD and suggest a novel therapeutic target for ASD treatment.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 6","pages":"567-580"},"PeriodicalIF":1.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prenatal and postnatal cocaine exposure enhances the anxiety- and depressive-like behaviors in rats: An ontogenetic study","authors":"Susana Barbosa Méndez, Alberto Salazar-Juárez","doi":"10.1002/jdn.10358","DOIUrl":"10.1002/jdn.10358","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Prenatal and postnatal exposure to drugs such as cocaine is a public health problem that causes deficits in brain development and function in humans and animals. One of the main effects of prenatal and postnatal cocaine exposure is increased vulnerability to developing the substance use disorder at an early age. Furthermore, the negative emotional states associated with cocaine withdrawal increase the fragility of patients to relapse into drug abuse. In this sense, prenatal and postnatal cocaine exposure enhanced the cocaine- and nicotine-induced locomotor activity and locomotor sensitization, and rats exposed prenatally to cocaine displayed an increase in anxiety- and depressive-like behaviors in adulthood (PND 60–70).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>Therefore, the objective of this study was to determine the effect of prenatal and postnatal cocaine exposure on anxiety- and depressive-like behaviors at different ages (30, 60, 90, and 120 days of age) in rats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The study was divided into two stages: prenatal and postnatal. In the prenatal stage, a group of pregnant female Wistar rats was administered daily from GD0 to GD21 cocaine (cocaine pre-exposure group), and another group of pregnant female rats was administered daily saline (saline pre-exposure group). In the postnatal stage, during lactation (PND0 to PND21), pregnant rats received administration of cocaine or saline, respectively. Of the litters resulting from the cocaine pre-exposed and saline pre-exposed pregnant female groups, only the male rats were used for the recording of the anxiety- and depressive-like behaviors at different postnatal ages (30, 60, 90, and 120 days), representative of adolescence, adult, adulthood, and old age.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The study found that prenatal and postnatal cocaine exposure generated age-dependent enhancement in anxiety- and depressive-like behaviors, being greater in older adult (PND 120) rats than in adolescent (PND 30) or adults (PND 60–90) rats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>This suggests that prenatal and postnatal cocaine exposure increases anxiety- and depressive-like behaviors, which may increase the vulnerability of subjects to different types of drugs in young and adult age.</p>\u0000 </section>\u0000 </div>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 6","pages":"546-557"},"PeriodicalIF":1.7,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141515221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Qin, Bowen Li, Binbin Hu, Juan Huang, Xingfu Tian, Xinyue Zhang, Ye Wang, Wei Huang
{"title":"Rhein inhibits M1 polarization of BV2 microglia through MAPK/IκB signalling pathway and reduces neurotoxicity caused by neuroinflammation","authors":"Xin Qin, Bowen Li, Binbin Hu, Juan Huang, Xingfu Tian, Xinyue Zhang, Ye Wang, Wei Huang","doi":"10.1002/jdn.10352","DOIUrl":"10.1002/jdn.10352","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Rhein is an anthraquinone compound with anti-inflammatory pharmacological activity. It has been found to play a neuroprotective role in neurological diseases, but the neuroprotective mechanism of rhein remains unclear.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>SH-SY5Y cells serving as neuron-like cells and BV2 microglia were used. The toxicity of rhein on BV2 microglia and the viability of SH-SY5Y cells were measured by CCK-8 assay. The mRNA expression and secretion of pro-inflammatory cytokines were detected by qPCR and ELISA. Iba1, CD86 and pathway signalling protein in BV2 microglia were assessed by Western blot and immunofluorescence. Apoptosis of SH-SY5Y cells exposed to neuroinflammation was analysed through flow cytometry.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Rhein inhibited MAPK/IκB signalling pathways. Further studies revealed that rhein inhibited the production of pro-inflammatory cytokines TNF-α, IL-6, IL-1β and iNOS in BV2 cells and also inhibited the expression of M1 polarization markers Iba1 and CD86 in BV2 cells. Furthermore, rhein reduced the apoptotic rate and restored cell viability of SH-SY5Y cells exposed to neuroinflammation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our study demonstrated that rhein inhibited microglia M1 polarization via MAPK/IκB signalling pathway and protected nerve cells through suppressing neuroinflammation.</p>\u0000 </section>\u0000 </div>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 6","pages":"533-545"},"PeriodicalIF":1.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruna Petrucelli Arruda, Natalia Andrea Cruz-Ochoa, Fernando Tadeu Serra, Gilberto Fernando Xavier, Maria Inês Nogueira, Silvia Honda Takada
{"title":"Melatonin attenuates developmental deficits and prevents hippocampal injuries in male and female rats subjected to neonatal anoxia","authors":"Bruna Petrucelli Arruda, Natalia Andrea Cruz-Ochoa, Fernando Tadeu Serra, Gilberto Fernando Xavier, Maria Inês Nogueira, Silvia Honda Takada","doi":"10.1002/jdn.10351","DOIUrl":"10.1002/jdn.10351","url":null,"abstract":"<p>Hypoxia in preterm infants is a clinical condition that has been associated with cognitive and behavioral disturbances for which treatment strategies are strongly required. Melatonin administration following brain insults has been considered a promising therapeutic strategy due to its antioxidant and anti-inflammatory effects. Not surprisingly, it has been extensively studied for preventing disturbances following brain injury. This study evaluated the effects of melatonin on developmental disturbances, memory disruption, and hippocampal cell loss induced by neonatal anoxia in rats. Neonatal Wistar rats were subjected to anoxia and subsequently treated with melatonin. Later, maturation of physical characteristics, ontogeny of reflexes, learning and memory in the Morris water maze (MWM), and estimates of the number of hippocampal neurons, were evaluated. Melatonin treatment attenuated (1) female anoxia-induced delay in superior incisor eruption, (2) female anoxia-induced vibrissae placement reflexes, and (3) male and female anoxia-induced hippocampal neuronal loss. Melatonin also promoted an increase (5) in swimming speeds in the MWM. In addition, PCA analysis showed positive associations between the acoustic startle, auditory canal open, and free fall righting parameters and negative associations between the male vehicle anoxia group and the male melatonin anoxia group. Therefore, melatonin treatment attenuates both anoxia-induced developmental deficits and hippocampal neuronal loss.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 6","pages":"520-532"},"PeriodicalIF":1.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hot and cold executive function among pediatric attention deficit hyperactivity disorder with and without coexisting oppositional defiant disorder","authors":"Nasim Kamalahmadi, Fatemeh Moharrari, Atefeh Soltanifar, Saeedeh Hajebi Khaniki, Hossein Mohaddes, Ghazaleh Noorbakhsh, Razie Salehabadi","doi":"10.1002/jdn.10346","DOIUrl":"10.1002/jdn.10346","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Executive function is a high-level set of cognitive processes related to goal-directed behaviors including two conceptual subtypes of hot (emotional) and cold (cognitive) executive function (to abbreviate EF). EF deficits in attention deficit hyperactivity disorder (ADHD) leads to significant social impairments in the home, school, and community. Today the type and the extent of executive function defects in ADHD are still debated in studies. We aimed to evaluate hot and cold executive function among medication-naive children with ADHD, with and without oppositional defiant disorder (ODD).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Forty-five children including suffering ADHD with ODD (<i>n</i> = 15), without ODD (<i>n</i> = 15), or typically developed (TD, <i>n</i> = 15) participated in this cross-sectional study (the age of children was between 7 and 12 years old). The Child Symptom Inventory-4 (CSI-4) was used to screen behavioral and emotional symptoms. Wechsler Adult Intelligence Scale-Revised-Digit Span Task (WAIS-R-DST), Corsi Block Task (CBT), and Wisconsin Card Sorting Test (WCST) were used for assessing cold executive function. Assessing hot executive function was done with Delay Discounting Task (DDT) and Iowa Gambling Task (IGT).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Evaluating the cold executive function, total WAIS-R-DST score, Backward DST, total CBT score, and Backward CBT were significantly lower among ADHD than TD groups (<i>p</i> < 0.05). Assessing the hot executive function showed that the score of DDT and IGT was significantly lower among ADHD than TD groups (<i>p</i> < 0.05).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Both hot and cold executive functions are defective in children with ADHD, while the comorbid of ODD has no significant effect. We suggest the clinicians to consider cognitive rehabilitation interventions as a necessary treatment modality for ADHD patients.</p>\u0000 </section>\u0000 </div>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 5","pages":"446-453"},"PeriodicalIF":1.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minerva Ortiz-Valladares, Christian Peregrino-Ramírez, Ricardo Pedraza-Medina, Jorge Guzmán-Muñiz
{"title":"Differential effects of perigestational consumption of sucrose-sweetened beverages on anxiety and depression-related behaviors in adult offspring: Sex disparity in a mouse model","authors":"Minerva Ortiz-Valladares, Christian Peregrino-Ramírez, Ricardo Pedraza-Medina, Jorge Guzmán-Muñiz","doi":"10.1002/jdn.10347","DOIUrl":"10.1002/jdn.10347","url":null,"abstract":"<p>Consumption of sucrose-sweetened drinks (SSDs) during pregnancy and breastfeeding can lead to various health and metabolism issues, but the potential impact on neurodevelopment and long-term effects remains unclear. This study aims to examine how maternal consumption of SSDs during gestation and lactation influences anxiety and depression-related behavior in adult offspring. Adult female CD-1 mice were randomly assigned to a control group (CG) or a sucrose group (SG) 2 weeks before gestation. The SG had 2 h of access to an SSD (15% w/w, 0.6 kcal/ml) for 2 weeks before mating, during pregnancy, and throughout lactation, totaling 8 weeks. Adult offspring were then evaluated for depressive-related behaviors and anxiety-related behaviors. Our findings reveal that perigestational consumption of SSDs does not lead to offspring presenting behaviors related to depression, but it does increase swimming behavior. However, maternal consumption of SSDs could impact the fighting response due to a diminished motivational component. In contrast, perigestational consumption of SSDs has apparent effects on anxiety-related behavior. Furthermore, female offspring appeared to be particularly vulnerable, exhibiting a higher anxiety index compared with controls. These findings indicate that females could be more vulnerable to the effects of maternal consumption of SSDs, being more susceptible to the presence of anxiety-related behaviors.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 5","pages":"434-445"},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Murtaza Haidary, S. Mohammad Ahmadi-Soleimani, Mina Ghofraninezad, Hassan Azhdari-Zarmehri, Farimah Beheshti
{"title":"Omega-3 fatty acids supplementation prevents learning and memory impairment induced by chronic ethanol consumption in adolescent male rats through restoration of inflammatory and oxidative responses","authors":"Murtaza Haidary, S. Mohammad Ahmadi-Soleimani, Mina Ghofraninezad, Hassan Azhdari-Zarmehri, Farimah Beheshti","doi":"10.1002/jdn.10336","DOIUrl":"10.1002/jdn.10336","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>Ethanol (Eth) intake is known to cause numerous detrimental effects on the structure and function of the brain, and it is commonly used as a psychostimulant drug by adolescents. Conversely, omega-3 (O<sub>3</sub>) can reduce the risk of cognitive decline and promote the maintenance of neurophysiological functions. In this study, we investigated the protective effects of O<sub>3</sub> on behavioral alterations, oxidative stress, and interleukin-6 (IL-6) levels induced by chronic Eth intake during adolescence in rats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and methods</h3>\u0000 \u0000 <p>Adolescent male rats (21 days old) were divided as follows: (1) Vehicle, (2) Eth (Eth in drinking water [20%]), (3–5) Eth + O<sub>3</sub> (50/100/150 mg/kg), and (6) O<sub>3</sub> (150 mg/kg). After 5 weeks, Morris water maze (MWM) and passive avoidance (PA) tests were performed, and the hippocampal and cortical levels of oxidative stress markers and inflammatory indices were measured.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Adolescent Eth intake impairs learning and memory function in MWM and PA tests (groups × day, <i>p</i> < 0.05 and <i>p</i> < 0.001, respectively). It was shown that Eth induced oxidative stress and neuroinflammation. O<sub>3</sub> improved learning and impairment induced by Eth by reducing the adverse effects of Eth on the oxidant/antioxidant balance in the hippocampi (for malondialdehyde [MDA]/thiol: <i>p</i> < 0.01, <i>p</i> < 0.001, respectively) and for superoxide dismutase (SOD)/catalase (CAT): <i>p</i> < 0.01 and <i>p</i> < 0.05, respectively). Furthermore, we found that O<sub>3</sub> prevented the Eth-induced increase of hippocampal IL-6 (<i>p</i> < 0.001).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>O<sub>3</sub> supplementation acts as an effective approach to prevent learning and memory impairments induced by chronic Eth consumption during adolescence. In this respect, the antioxidant and anti-inflammatory properties of O<sub>3</sub> seem to be the main underlying mechanisms of neuroprotection.</p>\u0000 </section>\u0000 </div>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 5","pages":"423-433"},"PeriodicalIF":1.7,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Restoration of hippocampal adult neurogenesis by CDRI-08 (Bacopa monnieri extract) relates with the recovery of BDNF–TrkB levels in male rats with moderate grade hepatic encephalopathy","authors":"Debasmit Mallick, Arup Acharjee, Papia Acharjee, Surendra Kumar Trigun","doi":"10.1002/jdn.10350","DOIUrl":"10.1002/jdn.10350","url":null,"abstract":"<p>Modulation of in vivo adult neurogenesis (AN) is an evolving concept in managing neurodegenerative diseases. CDRI-08, a bacoside-enriched fraction of <i>Bacopa monnieri</i>, has been demonstrated for its neuroprotective actions, but its effect on AN remains unexplored. This article describes the status of AN by monitoring neuronal stem cells (NSCs) proliferation, differentiation/maturation markers and BDNF–TrkB levels (NSCs signalling players) vs. the level of neurodegeneration and their modulations by CDRI-08 in the hippocampal dentate gyrus (DG) of male rats with moderate grade hepatic encephalopathy (MoHE). For NSC proliferation, 10 mg/kg b.w. 5-bromo-2′-deoxyuridine (BrdU) was administered i.p. during the last 3 days, and for the NSC differentiation study, it was given during the first 3 days to the control, the MoHE (developed by 100 mg/kg b.w. of thioacetamide i.p. up to 10 days) and to the MoHE male rats co-treated with 350 mg/kg b.w. CDRI-08. Compared with the control rats, the hippocampus DG region of MoHE rats showed significant decreases in the number of Nestin<sup>+</sup>/BrdU<sup>+</sup> and SOX2<sup>+</sup>/BrdU<sup>+</sup> (proliferating) and DCX<sup>+</sup>/BrdU<sup>+</sup> and NeuN<sup>+</sup>/BrdU<sup>+</sup> (differentiating) NSCs. This was consistent with a similar decline in BDNF<sup>+</sup>/TrkB<sup>+</sup> NSCs. However, all these NSC marker positive cells were observed to be recovered to their control levels, with a concordant restoration of total cell numbers in the DG of the CDRI-08-treated MoHE rats. The findings suggest that the restoration of hippocampal AN by CDRI-08 is consistent with the recovery of BDNF–TrkB-expressing NSCs in the MoHE rat model of neurodegeneration.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 6","pages":"510-519"},"PeriodicalIF":1.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decreased gray matter volume in the anterior cerebellar of attention deficit/hyperactivity disorder comorbid oppositional defiant disorder children with associated cerebellar-cerebral hyperconnectivity: insights from a combined structural MRI and resting-state fMRI study","authors":"Xin Wang, Yan Guo, Jin Xu, Yong Xiao, Yigang Fu","doi":"10.1002/jdn.10349","DOIUrl":"10.1002/jdn.10349","url":null,"abstract":"<p>Attention deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) are highly comorbid. Many prior investigations have found that ADHD relates to anatomical abnormalities in gray matter. The abnormal gray matter of ADHD comorbid ODD is still poorly understood. This study aimed to explore the effect of comorbid ODD on gray matter volume (GMV) and functional alterations in ADHD. All data were provided by the ADHD-200 Preprocessed Repository, including 27 ADHD-only children, 27 ADHD + ODD children, and 27 healthy controls aged 9–14 years. Voxel-based morphometry (VBM) and functional connectivity (FC) of resting-state functional magnetic resonance imaging (fMRI) were used to compare the difference in GMV and FC between ADHD + ODD, ADHD-only, and healthy children. The results showed that ADHD children with comorbid ODD had a more significant reduction in cerebellar volume, mainly in the anterior regions of the cerebellum (Cerebellum_4_5). The Cerebellum_4_5 showed increased functional connectivity with multiple cortical regions. These brain regions include numerous executive functioning (EF) and brain default mode network (DMN) nodes. The GMV abnormalities and excessive connectivity between brain regions may further exacerbate the emotional and cognitive deficits associated with ADHD.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 6","pages":"500-509"},"PeriodicalIF":1.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philip Maseghe Mwachaka, Peter Gichangi, Adel Abdelmalek, Paul Odula, Julius Ogeng'o
{"title":"Impact of varying maternal dietary folate intake on cerebellar cortex histomorphology and cell density in offspring rats","authors":"Philip Maseghe Mwachaka, Peter Gichangi, Adel Abdelmalek, Paul Odula, Julius Ogeng'o","doi":"10.1002/jdn.10337","DOIUrl":"10.1002/jdn.10337","url":null,"abstract":"<p>The cerebellum has a long, protracted developmental period that spans from the embryonic to postnatal periods; as a result, it is more sensitive to intrauterine and postnatal insults like nutritional deficiencies. Folate is crucial for foetal and early postnatal brain development; however, its effects on cerebellar growth and development are unknown. The aim of this study was to examine the effects of maternal folate intake on the histomorphology and cell density of the developing cerebellum. Twelve adult female rats (<i>rattus norvegicus</i>) were randomly assigned to one of four premixed diet groups: standard (2 mg/kg), folate-deficient (0 mg/kg), folate-supplemented (8 mg/kg) or folate supra-supplemented (40 mg/kg). The rats started their diets 14 days before mating and consumed them throughout pregnancy and lactation. On postnatal days 1, 7, 21 and 35, five pups from each group were sacrificed, and their brains were processed for light microscopic analysis. Histomorphology and cell density of the external granule, molecular, Purkinje and internal granule layers were obtained. The folate-deficient diet group had smaller, dysmorphic cells and significantly lower densities of external granule, molecular, Purkinje and internal granule cells. Although the folate-enriched groups had greater cell densities than the controls, the folate-supplemented group had considerably higher cell densities than the supra-supplemented group. The folate supra-supplemented group had ectopic Purkinje cells in the internal granule cell layer. These findings imply that a folate-deficient diet impairs cellular growth and reduces cell density in the cerebellar cortex. On the other hand, folate supplementation increases cell densities, but there appears to be an optimal dose of supplementation since excessive folate levels may be detrimental.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 5","pages":"406-422"},"PeriodicalIF":1.7,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}