International Journal of Applied Glass Science最新文献

筛选
英文 中文
Alternative raw material research for decarbonization of UK glass manufacture 英国玻璃生产脱碳的替代原料研究
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-04-29 DOI: 10.1111/ijag.16637
Wei Deng, Daniel J. Backhouse, Feroz Kabir Kazi, Ronak Janani, Chris Holcroft, Marlin Magallanes, Martyn Marshall, Caroline M. Jackson, Paul A. Bingham
{"title":"Alternative raw material research for decarbonization of UK glass manufacture","authors":"Wei Deng,&nbsp;Daniel J. Backhouse,&nbsp;Feroz Kabir Kazi,&nbsp;Ronak Janani,&nbsp;Chris Holcroft,&nbsp;Marlin Magallanes,&nbsp;Martyn Marshall,&nbsp;Caroline M. Jackson,&nbsp;Paul A. Bingham","doi":"10.1111/ijag.16637","DOIUrl":"https://doi.org/10.1111/ijag.16637","url":null,"abstract":"<p>Based on the current UK decarbonization policy, a general outlook on potential routes for the glass industry to achieve net-zero is discussed and the differentiation during decarbonization is specified. Biomass ash is considered a potential alternative raw material for low-carbon glass manufacture as it is rich in certain advantageous components, chiefly network modifiers. Simple sieving processes were shown to effectively separate impurities such as S, Cl, and C from some biomass ashes according to particle size distribution. The concentration of undesirable impurities decreased with increasing particle size. Morphologies and X-ray diffraction patterns of larger washed biomass ash particles indicated liquid/amorphous phase formation during biomass combustion. The washing of ashes was also shown to be a potential route to purification. A washed bracken ash relevant to both modern and ancient glass production was characterized for comparison. Ultraviolet-visible near-infrared (UV-Vis-near IR) absorption spectra of representative green container glasses produced using biomass ash confirmed that ∼5 wt.% ash in representative glass batches has little impact on the color and redox state of glasses; the redox status of glass produced using &gt;2 mm biomass ash after washing was less reduced than that of glass produced using high levels (&gt;∼9 wt.%) of &gt;2 mm biomass ash after sieving alone, observed via the redox couple Cr<sup>3+</sup>/Cr<sup>6+</sup> by UV-Vis-near IR absorption spectroscopy.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"341-365"},"PeriodicalIF":2.1,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16637","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50147554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Alternative raw material research for decarbonisation of UK glass manufacture 英国玻璃生产脱碳的替代原材料研究
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-04-29 DOI: 10.1111/ijag.16637
W. Deng, D. Backhouse, Feroz Kabir Kazi, R. Janani, C. Holcroft, M. Magallanes, M. Marshall, C. Jackson, P. Bingham
{"title":"Alternative raw material research for decarbonisation of UK glass manufacture","authors":"W. Deng, D. Backhouse, Feroz Kabir Kazi, R. Janani, C. Holcroft, M. Magallanes, M. Marshall, C. Jackson, P. Bingham","doi":"10.1111/ijag.16637","DOIUrl":"https://doi.org/10.1111/ijag.16637","url":null,"abstract":"","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48813556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Review of bismuth-doped fibers used in O-band optical amplifiers-scientific challenges and outlook O波段光放大器用掺铋光纤综述——科学挑战与展望
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-04-19 DOI: 10.1111/ijag.16635
Jiawei Luo, Vitaly Mikhailov, Robert Windeler, Daryl Inniss, David DiGiovanni
{"title":"Review of bismuth-doped fibers used in O-band optical amplifiers-scientific challenges and outlook","authors":"Jiawei Luo,&nbsp;Vitaly Mikhailov,&nbsp;Robert Windeler,&nbsp;Daryl Inniss,&nbsp;David DiGiovanni","doi":"10.1111/ijag.16635","DOIUrl":"10.1111/ijag.16635","url":null,"abstract":"<p>Bismuth-doped phosphosilicate fibers have become the most promising gain medium for O-band amplifiers. Yet scientific challenges on understanding the nature of bismuth active centers (BACs), mechanisms of bismuth cluster formation in the phosphosilicate glass network still exist. It is likely that multiple BACs with different oxidation states in different structural sites all contribute to the broad, nonsymmetric luminescence and gain spectra. Due to the progress in the fundamental understanding of bismuth-doped phosphosilicate glass, various designs of optical amplifiers with decent performances have been demonstrated.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"480-487"},"PeriodicalIF":2.1,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41853652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of femtosecond laser irradiation on structure-terahertz property relationship in sodium borosilicate glasses 飞秒激光辐照对硼硅酸钠玻璃结构-太赫兹特性关系的影响
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-04-07 DOI: 10.1111/ijag.16634
Nicholas J. Tostanoski, Randall E. Youngman, S. K. Sundaram
{"title":"Effect of femtosecond laser irradiation on structure-terahertz property relationship in sodium borosilicate glasses","authors":"Nicholas J. Tostanoski,&nbsp;Randall E. Youngman,&nbsp;S. K. Sundaram","doi":"10.1111/ijag.16634","DOIUrl":"https://doi.org/10.1111/ijag.16634","url":null,"abstract":"<p>We report the effect of high-repetition rate femtosecond (fs) laser irradiation on structure-terahertz (THz) property relationship for sodium borosilicate glasses. We have used nuclear magnetic resonance (NMR), terahertz time-domain spectroscopy (THz-TDS), and Raman spectroscopy to examine pristine and laser irradiated regions of these glasses to determine and quantify boron speciation, THz refractive index, n(THz), and change (Δn) in n(THz), and spectral, that is, structural, changes due to laser exposure, respectively. Our results suggest that laser irradiation-induced Δn(THz) values are dependent upon the glass composition, structural units, connectivity, and network, for example, the corresponding K- and R-values of the borosilicate glass. Depolymerized glass networks show no changes in NMR B<sub>4</sub> signal, slight changes in Raman spectral changes related to silicate structural units, for example, increase in Q<sup>3</sup> tetrahedra with one nonbridging oxygen (nbO) atom, and higher measurable n(THz) and Δn(THz). More polymerized glasses, on the other hand, show changes in NMR B<sub>4</sub> signal, varying degrees of Raman spectral changes in the borate subnetwork and structural units, and lower n(THz) and Δn(THz). The THz refractive index is most sensitive to modifier ions in the glasses, which are directly responsible for nbO formation, glass structure, and network polymerization.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"559-572"},"PeriodicalIF":2.1,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50123444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elemental behaviors of γ-irradiated borosilicate glass as a vitrification model γ辐照硼硅酸盐玻璃的元素行为作为玻璃化模型
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-04-04 DOI: 10.1111/ijag.16632
Jiandong Zhang, Xiaoyu Xia, Fanrong Zeng, Xiaochong Xi, Xiaoyang Zhang, Yuhe Pan, Yuxi Sun, Wenbao Jia, Haibo Peng
{"title":"Elemental behaviors of γ-irradiated borosilicate glass as a vitrification model","authors":"Jiandong Zhang,&nbsp;Xiaoyu Xia,&nbsp;Fanrong Zeng,&nbsp;Xiaochong Xi,&nbsp;Xiaoyang Zhang,&nbsp;Yuhe Pan,&nbsp;Yuxi Sun,&nbsp;Wenbao Jia,&nbsp;Haibo Peng","doi":"10.1111/ijag.16632","DOIUrl":"10.1111/ijag.16632","url":null,"abstract":"<p>Borosilicate glass has been extensively studied due to its unique properties of solidifying high-level radioactive waste (HLW). However, the responses of borosilicate glass under γ irradiation are not fully understood. In this work, NBS9 and NBS10 glass were irradiated by γ-rays at absorbed doses of 8 kGy and 800 kGy, respectively. Scanning electronic microscopy, energy dispersive X-ray, and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to observe the surface morphology and elemental distributions. The results show that the borosilicate glass remains stable until the absorbed dose was up to 800 kGy. At 800 kGy, the samples precipitate particles composed of Na and O on the surface. Na and B near the surface are significantly reduced under γ-rays irradiation. The results indicate that the effects of γ irradiation on glass vitrification are obvious with certain accumulated doses. The changes of glass structures and elemental distributions by γ-ray irradiation are also dependent on glass compositions.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"380-388"},"PeriodicalIF":2.1,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45334111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An insight into the thermal processability of highly bioactive borosilicate glasses through kinetic approach 用动力学方法研究高活性硼硅酸盐玻璃的热加工性能
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-03-31 DOI: 10.1111/ijag.16633
Anustup Chakraborty, Subhadip Bodhak, Atiar Rahaman Molla, Kalyandurg Annapurna, Kaushik Biswas
{"title":"An insight into the thermal processability of highly bioactive borosilicate glasses through kinetic approach","authors":"Anustup Chakraborty,&nbsp;Subhadip Bodhak,&nbsp;Atiar Rahaman Molla,&nbsp;Kalyandurg Annapurna,&nbsp;Kaushik Biswas","doi":"10.1111/ijag.16633","DOIUrl":"10.1111/ijag.16633","url":null,"abstract":"<p>The paucity of crystallization resistant bioactive glasses with desired biological functions stands as a bottleneck toward the fabrication of various biomedical constructs such as amorphous coatings, scaffolds, and fibers for advanced tissue engineering applications. In this context, a series of borosilicate-based bioactive glasses with a range of compositions: (53.88 − <i>x</i>)SiO<sub>2</sub>–21.7Na<sub>2</sub>O–21.7CaO–1.7P<sub>2</sub>O<sub>5</sub>–<i>x</i>B<sub>2</sub>O<sub>3</sub> (mol%) where <i>x</i> = 0, 13.47, 22.45, 31.43, and 40.41 were prepared to address such limitation. The glasses were primarily investigated for their potential to be processed into amorphous scaffolds through evaluation of crystallization kinetics, sintering behavior, and viscosity–temperature dependence. The inclusion of B<sub>2</sub>O<sub>3</sub> gradually reduces the activation energy of crystallization (<i>E<sub>a</sub></i>), according to the prediction from different kinetic models, whereas Friedman's model-free method unraveled the variation in <i>E<sub>a</sub></i> as crystallization progresses. The crystallization event is further elucidated by obtaining the Avrami parameter (<i>n</i>) and dimensionality (<i>m</i>) through Matusita–Sakka equation. The optimization of the sintering schedule for amorphous scaffold preparation was accomplished by exploiting isothermal prediction from Avrami–Erofeev model. Moreover, viscosity–temperature relationship for the studied glasses was established to identify the processing window for drawing and sintering. This study proposes a comprehensive approach adopting theoretical models to elucidate suitable high-temperature process parameters of bioactive glasses avoiding devitrification.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"534-548"},"PeriodicalIF":2.1,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42078408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of material properties on batch-to-glass conversion kinetics 材料性质对批料-玻璃转化动力学的影响
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-03-23 DOI: 10.1111/ijag.16631
Pavel Ferkl, Pavel Hrma, Jaroslav Kloužek, Albert A. Kruger, Richard Pokorný
{"title":"Effect of material properties on batch-to-glass conversion kinetics","authors":"Pavel Ferkl,&nbsp;Pavel Hrma,&nbsp;Jaroslav Kloužek,&nbsp;Albert A. Kruger,&nbsp;Richard Pokorný","doi":"10.1111/ijag.16631","DOIUrl":"10.1111/ijag.16631","url":null,"abstract":"<p>A recently developed model of the cold cap—the reacting glass batch (melter feeds) floating on molten glass in an electric glass melter—couples heat transfer with the feed-to-glass conversion kinetics. The model allows for determining the distributions of temperature and various properties within the cold cap. In the present study, this model is applied to four melter feeds designed for high-level and low-activity nuclear wastes. Profiles of temperature, conversion degree, cold cap porosity and density, condensed matter velocity, and heating rate were determined using the material properties of the cold cap. Effects of vigorous foaming at the cold cap bottom were considered. Density, thermal conductivity, and glass production rate strongly affect the cold cap thickness and the fraction of undissolved silica entering the melt under the cold cap. The heating rate profile in the cold cap is highly nonlinear, with high heating rates observed in the foam layer.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"491-501"},"PeriodicalIF":2.1,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16631","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45125774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards controllable material removal of glass‐ceramic surface for low‐deformation machining 面向低变形加工的可控玻璃陶瓷表面材料去除
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-03-15 DOI: 10.1111/ijag.16630
Huaicheng Zhou, Chengqiang Feng, Yu Lin, Jian Gao, Bingjun Yu, Li Qian
{"title":"Towards controllable material removal of glass‐ceramic surface for low‐deformation machining","authors":"Huaicheng Zhou, Chengqiang Feng, Yu Lin, Jian Gao, Bingjun Yu, Li Qian","doi":"10.1111/ijag.16630","DOIUrl":"https://doi.org/10.1111/ijag.16630","url":null,"abstract":"","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43809640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward controllable material removal of glass–ceramic surface for low-deformation machining 实现低变形加工中玻璃-陶瓷表面的可控材料去除
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-03-15 DOI: 10.1111/ijag.16630
Huaicheng Zhou, Chengqiang Feng, Yu Lin, Jian Gao, Bingjun Yu, Linmao Qian
{"title":"Toward controllable material removal of glass–ceramic surface for low-deformation machining","authors":"Huaicheng Zhou,&nbsp;Chengqiang Feng,&nbsp;Yu Lin,&nbsp;Jian Gao,&nbsp;Bingjun Yu,&nbsp;Linmao Qian","doi":"10.1111/ijag.16630","DOIUrl":"https://doi.org/10.1111/ijag.16630","url":null,"abstract":"<p>Due to its extremely high optical uniformity and excellent hot stability, glass–ceramic serves as a key material for ultraprecision imaging of lithography lens, and low-deformation machining is of significance for achieving high-quality surface. Aiming at controllable processing, the annealing of different nanoscratches on glass–ceramic was investigated for revealing the mechanism of material removal and damage repair. The volume change of the single-pass nanoscratch under various normal loads and sliding velocities before and after the annealing was calculated for quantifying the contribution of shear flow, densification, and residual stress to the material removal, respectively. It is found that ductile removal under high normal load or low sliding velocity is dominated by shear flow, thereby improving removal efficiency and reducing machining deformation and defects caused by densification and residual stress. The changes of microstructures beneath the scratches before and after annealing further reveal that the excess processing energy will be absorbed in glass–crystal interface and form micro-cracks on crystal surface. For comparison, brittle removal under variable cycles was simulated by multi-pass nanoscratches, and it reveals that the shear flow ratio raises gradually with the increase of cycle number. These findings provide theoretical guidance for ultraprecision processing of glass–ceramic surfaces.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"549-558"},"PeriodicalIF":2.1,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50133710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glass transition temperature of low-activity waste nuclear glasses 低活度废核玻璃的玻璃化转变温度
IF 2.1 3区 材料科学
International Journal of Applied Glass Science Pub Date : 2023-03-08 DOI: 10.1111/ijag.16629
Jaime L. George, Pavel Ferkl, Jose Marcial, Tongan Jin, Pavel Hrma, Albert A. Kruger
{"title":"Glass transition temperature of low-activity waste nuclear glasses","authors":"Jaime L. George,&nbsp;Pavel Ferkl,&nbsp;Jose Marcial,&nbsp;Tongan Jin,&nbsp;Pavel Hrma,&nbsp;Albert A. Kruger","doi":"10.1111/ijag.16629","DOIUrl":"10.1111/ijag.16629","url":null,"abstract":"<p>The glass transition temperature (<i>T</i><sub>g</sub>) is a parameter used in many glass melt viscosity models as it denotes a temperature around which liquid-glass transition occurs. In this work, <i>T</i><sub>g</sub> values were measured for a series of low-activity waste (LAW) glasses using differential scanning calorimetry. These data were combined with <i>T</i><sub>g</sub> data of other waste glasses available from literature. The combined dataset, consisting of 137 data points, was used for the development of several models to estimate <i>T</i><sub>g</sub> from glass composition. When testing the number of influential components and different supervised learning methods, we demonstrated that using more than 10 components or using non-linear methods brought marginal improvement to the model accuracy. The best model predicts <i>T</i><sub>g</sub> of both LAW and high-level waste glasses with reasonable accuracy.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"399-407"},"PeriodicalIF":2.1,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41477263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信