低活度废核玻璃的玻璃化转变温度

IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Jaime L. George, Pavel Ferkl, Jose Marcial, Tongan Jin, Pavel Hrma, Albert A. Kruger
{"title":"低活度废核玻璃的玻璃化转变温度","authors":"Jaime L. George,&nbsp;Pavel Ferkl,&nbsp;Jose Marcial,&nbsp;Tongan Jin,&nbsp;Pavel Hrma,&nbsp;Albert A. Kruger","doi":"10.1111/ijag.16629","DOIUrl":null,"url":null,"abstract":"<p>The glass transition temperature (<i>T</i><sub>g</sub>) is a parameter used in many glass melt viscosity models as it denotes a temperature around which liquid-glass transition occurs. In this work, <i>T</i><sub>g</sub> values were measured for a series of low-activity waste (LAW) glasses using differential scanning calorimetry. These data were combined with <i>T</i><sub>g</sub> data of other waste glasses available from literature. The combined dataset, consisting of 137 data points, was used for the development of several models to estimate <i>T</i><sub>g</sub> from glass composition. When testing the number of influential components and different supervised learning methods, we demonstrated that using more than 10 components or using non-linear methods brought marginal improvement to the model accuracy. The best model predicts <i>T</i><sub>g</sub> of both LAW and high-level waste glasses with reasonable accuracy.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"399-407"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Glass transition temperature of low-activity waste nuclear glasses\",\"authors\":\"Jaime L. George,&nbsp;Pavel Ferkl,&nbsp;Jose Marcial,&nbsp;Tongan Jin,&nbsp;Pavel Hrma,&nbsp;Albert A. Kruger\",\"doi\":\"10.1111/ijag.16629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The glass transition temperature (<i>T</i><sub>g</sub>) is a parameter used in many glass melt viscosity models as it denotes a temperature around which liquid-glass transition occurs. In this work, <i>T</i><sub>g</sub> values were measured for a series of low-activity waste (LAW) glasses using differential scanning calorimetry. These data were combined with <i>T</i><sub>g</sub> data of other waste glasses available from literature. The combined dataset, consisting of 137 data points, was used for the development of several models to estimate <i>T</i><sub>g</sub> from glass composition. When testing the number of influential components and different supervised learning methods, we demonstrated that using more than 10 components or using non-linear methods brought marginal improvement to the model accuracy. The best model predicts <i>T</i><sub>g</sub> of both LAW and high-level waste glasses with reasonable accuracy.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"14 3\",\"pages\":\"399-407\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16629\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16629","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1

摘要

玻璃化转变温度(Tg)是许多玻璃熔体粘度模型中使用的参数,因为它表示液体-玻璃化转变发生的温度。在这项工作中,用差示扫描量热法测量了一系列低活性废物(LAW)玻璃的Tg值。这些数据与文献中其他废玻璃的Tg数据相结合。合并的数据集由137个数据点组成,用于开发几个模型来估计玻璃成分的Tg。当测试影响分量的数量和不同的监督学习方法时,我们证明使用超过10个分量或使用非线性方法对模型精度的提高是边际的。最好的模型能以合理的精度预测法和高废玻璃的Tg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glass transition temperature of low-activity waste nuclear glasses

The glass transition temperature (Tg) is a parameter used in many glass melt viscosity models as it denotes a temperature around which liquid-glass transition occurs. In this work, Tg values were measured for a series of low-activity waste (LAW) glasses using differential scanning calorimetry. These data were combined with Tg data of other waste glasses available from literature. The combined dataset, consisting of 137 data points, was used for the development of several models to estimate Tg from glass composition. When testing the number of influential components and different supervised learning methods, we demonstrated that using more than 10 components or using non-linear methods brought marginal improvement to the model accuracy. The best model predicts Tg of both LAW and high-level waste glasses with reasonable accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Glass Science
International Journal of Applied Glass Science MATERIALS SCIENCE, CERAMICS-
CiteScore
4.50
自引率
9.50%
发文量
73
审稿时长
>12 weeks
期刊介绍: The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信