Nicholas J. Tostanoski, Randall E. Youngman, S. K. Sundaram
{"title":"飞秒激光辐照对硼硅酸钠玻璃结构-太赫兹特性关系的影响","authors":"Nicholas J. Tostanoski, Randall E. Youngman, S. K. Sundaram","doi":"10.1111/ijag.16634","DOIUrl":null,"url":null,"abstract":"<p>We report the effect of high-repetition rate femtosecond (fs) laser irradiation on structure-terahertz (THz) property relationship for sodium borosilicate glasses. We have used nuclear magnetic resonance (NMR), terahertz time-domain spectroscopy (THz-TDS), and Raman spectroscopy to examine pristine and laser irradiated regions of these glasses to determine and quantify boron speciation, THz refractive index, n(THz), and change (Δn) in n(THz), and spectral, that is, structural, changes due to laser exposure, respectively. Our results suggest that laser irradiation-induced Δn(THz) values are dependent upon the glass composition, structural units, connectivity, and network, for example, the corresponding K- and R-values of the borosilicate glass. Depolymerized glass networks show no changes in NMR B<sub>4</sub> signal, slight changes in Raman spectral changes related to silicate structural units, for example, increase in Q<sup>3</sup> tetrahedra with one nonbridging oxygen (nbO) atom, and higher measurable n(THz) and Δn(THz). More polymerized glasses, on the other hand, show changes in NMR B<sub>4</sub> signal, varying degrees of Raman spectral changes in the borate subnetwork and structural units, and lower n(THz) and Δn(THz). The THz refractive index is most sensitive to modifier ions in the glasses, which are directly responsible for nbO formation, glass structure, and network polymerization.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"559-572"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of femtosecond laser irradiation on structure-terahertz property relationship in sodium borosilicate glasses\",\"authors\":\"Nicholas J. Tostanoski, Randall E. Youngman, S. K. Sundaram\",\"doi\":\"10.1111/ijag.16634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report the effect of high-repetition rate femtosecond (fs) laser irradiation on structure-terahertz (THz) property relationship for sodium borosilicate glasses. We have used nuclear magnetic resonance (NMR), terahertz time-domain spectroscopy (THz-TDS), and Raman spectroscopy to examine pristine and laser irradiated regions of these glasses to determine and quantify boron speciation, THz refractive index, n(THz), and change (Δn) in n(THz), and spectral, that is, structural, changes due to laser exposure, respectively. Our results suggest that laser irradiation-induced Δn(THz) values are dependent upon the glass composition, structural units, connectivity, and network, for example, the corresponding K- and R-values of the borosilicate glass. Depolymerized glass networks show no changes in NMR B<sub>4</sub> signal, slight changes in Raman spectral changes related to silicate structural units, for example, increase in Q<sup>3</sup> tetrahedra with one nonbridging oxygen (nbO) atom, and higher measurable n(THz) and Δn(THz). More polymerized glasses, on the other hand, show changes in NMR B<sub>4</sub> signal, varying degrees of Raman spectral changes in the borate subnetwork and structural units, and lower n(THz) and Δn(THz). The THz refractive index is most sensitive to modifier ions in the glasses, which are directly responsible for nbO formation, glass structure, and network polymerization.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"14 4\",\"pages\":\"559-572\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16634\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16634","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effect of femtosecond laser irradiation on structure-terahertz property relationship in sodium borosilicate glasses
We report the effect of high-repetition rate femtosecond (fs) laser irradiation on structure-terahertz (THz) property relationship for sodium borosilicate glasses. We have used nuclear magnetic resonance (NMR), terahertz time-domain spectroscopy (THz-TDS), and Raman spectroscopy to examine pristine and laser irradiated regions of these glasses to determine and quantify boron speciation, THz refractive index, n(THz), and change (Δn) in n(THz), and spectral, that is, structural, changes due to laser exposure, respectively. Our results suggest that laser irradiation-induced Δn(THz) values are dependent upon the glass composition, structural units, connectivity, and network, for example, the corresponding K- and R-values of the borosilicate glass. Depolymerized glass networks show no changes in NMR B4 signal, slight changes in Raman spectral changes related to silicate structural units, for example, increase in Q3 tetrahedra with one nonbridging oxygen (nbO) atom, and higher measurable n(THz) and Δn(THz). More polymerized glasses, on the other hand, show changes in NMR B4 signal, varying degrees of Raman spectral changes in the borate subnetwork and structural units, and lower n(THz) and Δn(THz). The THz refractive index is most sensitive to modifier ions in the glasses, which are directly responsible for nbO formation, glass structure, and network polymerization.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.