Leonardo Evaristo, Rafael Silveira, Matheus Tissot, Gisele Hippler, Benjamin Moulton, Silvio Buchner
{"title":"Effect of high pressure in barium disilicate glass investigated by DTA and Raman spectroscopy","authors":"Leonardo Evaristo, Rafael Silveira, Matheus Tissot, Gisele Hippler, Benjamin Moulton, Silvio Buchner","doi":"10.1111/ijag.16606","DOIUrl":"10.1111/ijag.16606","url":null,"abstract":"<p>This work aimed to explore the effect of high pressures at room temperature on the vibrational modes and the thermal properties and stability of barium disilicate glass (BaO-2SiO<sub>2</sub>) (BS2). The BS2 was prepared through the conventional melting route at atmospheric pressure. After being submitted to different pressure values (2.5 GPa, 4.0 GPa, and 7.7 GPa) and room temperature, the samples were characterized ex situ by Raman spectroscopy and differential thermal analysis. With this, it is possible to see that the pressure modifies the Raman vibrational modes of the glass, in the region associated with the Si-O-Si symmetrical bending modes. The Si-O symmetrical stretching vibrational modes (Q<sup>n</sup>) remain unchanged, however there are changes on values of glass transition and decrease crystallization temperature, as well as the parameters of thermal stability of the glass.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 2","pages":"240-246"},"PeriodicalIF":2.1,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48069660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Barsheek Roy, Felix Baier, Andreas Rosin, Thorsten Gerdes, Stefan Schafföner
{"title":"Structural characterization of the near-surface region of soda–lime–silica glass by X-ray photoelectron spectroscopy","authors":"Barsheek Roy, Felix Baier, Andreas Rosin, Thorsten Gerdes, Stefan Schafföner","doi":"10.1111/ijag.16604","DOIUrl":"10.1111/ijag.16604","url":null,"abstract":"<p>The structural chemistry of the near-surface region of soda–lime–silica (SLS) glass is described in terms of silicate network connectivity using X-ray photoelectron spectroscopy (XPS). A thorough investigation of O1s and Si2p spectral lines by sequential XPS measurements, accompanied by Ar<sup>+</sup> sputtering, revealed the variation of concentration of bridging oxygen, non-bridging oxygen (NBO), and hydrous species (SiOH/H<sub>2</sub>O) as a function of depth from the glass surface. The O<sub>total</sub>/Si atomic ratio was calculated to vary in the range of 2.90–3.74 throughout the depth of sputtering for a total duration of 110 min, while considering each of the aforementioned oxygen speciations in the curve-fitted spectra of O1s orbital. The glass surface up to a depth of 1–3 nm had the highest O<sub>total</sub>/Si ratio of 3.74, which was representative for a mechanically weak structure with Q<sup>0</sup> and Q<sup>1</sup> species, marked by the respective linkages of four and three NBOs per silica tetrahedral unit. This dictates the vital contribution of the hydrous species associated with silanol groups to the near-surface structure of SLS glass.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 2","pages":"229-239"},"PeriodicalIF":2.1,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41410589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Márcia Vilarigues, Andreia Ruivo, Thijs Hagendijk, Mario Bandiera, Mathilda Coutinho, Luis C. Alves, Sven Dupré
{"title":"Red glass in Kunckel's Ars Vitraria Experimentalis: The importance of temperature","authors":"Márcia Vilarigues, Andreia Ruivo, Thijs Hagendijk, Mario Bandiera, Mathilda Coutinho, Luis C. Alves, Sven Dupré","doi":"10.1111/ijag.16605","DOIUrl":"10.1111/ijag.16605","url":null,"abstract":"<p>The role of the melting conditions and furnaces used to the obtained final colors has always been a question raised when investigating formulations and recipes of historical glasses. The focus of the present work is the reproduction of three recipes of red enamel glass of the manuscript by Neri, <i>L'arte vetraria</i> (1612) following the translation and comments by Kunckel's in <i>Ars Vitraria Experimentalis</i> (1679). The reproductions include the production of each individual compound of the selected recipes following instructions, and the final glass production in electric and wood-fire furnaces to assess the effect of different melting conditions. A multianalytical approach was used to fully characterize the produced samples allowing the study of the enamel chemical composition, color, crystals formations, and thermal properties. The results indicate that no significant color differences may be attributed to the melting conditions. However, it revealed that the samples produced in the electric furnace at 1200°C present a high crystallinity degree and the formation of white crystals at room temperature in a short period of time. The formation of crystals on glass is critical, and historically, to avoid it, these recipes must have been made at temperatures between 1050 and 1100°C.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 2","pages":"201-215"},"PeriodicalIF":2.1,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44407484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Jans Faber, Mathi Rongen, Domingos De Sousa Meneses
{"title":"High-temperature near-IR spectral properties and thermal radiation conductivity of (un)colored silicate glass melts","authors":"Anne Jans Faber, Mathi Rongen, Domingos De Sousa Meneses","doi":"10.1111/ijag.16603","DOIUrl":"10.1111/ijag.16603","url":null,"abstract":"<p>Using an emittance technique with a fast CO<sub>2</sub> laser heating of glass samples, the high-temperature absorption spectra in the near-infrared region of ultrapure and colored (Co-, Cu-, Mn-, and Ni-doped) glasses are measured. The effects of higher glass temperatures on these absorption spectra are explained in the framework of the ligand field theory. Thus, the temperature-dependent absorption bands of the previous transition metal ions are assigned to electronic transitions among the ligand field energy levels of these ions. In particular, spectral shifts, spectral broadening, and changes in absorption strength are ascribed to changes in the structural symmetry of the ionic sites in the glass matrix and to changes of the ligand field strength at increasing temperatures.</p><p>Besides, the temperature-dependent Rosseland mean absorptions of the sulfate fined soda lime silicate glass melts, colored with the previous transition metal ions, are derived from the absorption spectra. Combining all the data, semiempirical correlations are derived, which predict the Rosseland thermal radiation properties as a function of glass temperature and of glass redox chemistry. The latter property involves the temperature-dependent concentration of the specific valency of the coloring ions, determined independently, e.g. by a Gibbs minimization redox calculation tool.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 2","pages":"189-200"},"PeriodicalIF":2.1,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44458665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}