Lina Heuser, Marianne Nofz, Ralf Müller, Joachim Deubener
{"title":"Silver dissolution and precipitation in an Na2O–ZnO–B2O3 metallization paste glass","authors":"Lina Heuser, Marianne Nofz, Ralf Müller, Joachim Deubener","doi":"10.1111/ijag.16613","DOIUrl":"https://doi.org/10.1111/ijag.16613","url":null,"abstract":"<p>Thermally stimulated interactions between silver and glass, that is, silver dissolution as Ag<sup>+</sup> and precipitation as Ag<sup>0</sup> were studied in two glass series of molar target composition <i>x</i>Ag<sub>2</sub>O–(19 − <i>x</i>)Na<sub>2</sub>O–28ZnO–53B<sub>2</sub>O<sub>3</sub> with <i>x</i> = 0, 0.1, 0.5, 5 and (19Na<sub>2</sub>O–28ZnO–53B<sub>2</sub>O<sub>3</sub>)+<i>y</i>Ag<sub>2</sub>O with <i>y</i> = 0.01, 0.05. These act as model for low-melting borate glasses being part of metallization pastes. The occurrence of metallic silver precipitates in melt-quenched glass ingots demonstrated that silver dissolved only in traces (< 0.01 mol%) in the glasses. The dissolved silver was detected by means of Raman spectroscopy and energy-dispersive X-ray spectroscopy. Increasing <i>x</i> in the batch could not lead to a significant increase of the silver ion fraction in the glass as possible in binary silver borate glasses. In situ observation of heated AgNO<sub>3</sub> mixed with the base glass frit in a hot stage microscope showed that Ag<sup>0</sup> precipitation occurs already at the solid state. At higher temperatures, small droplets of liquid silver were found to move freely within the melt, whereas coalescence caused a stepwise increase of their size. These results contribute to the understanding of formation of silver precipitates in metallization pastes described in the literature.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 2","pages":"307-317"},"PeriodicalIF":2.1,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50151881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pavel Ferkl, Pavel Hrma, Alexander Abboud, Donna Post Guillen, Miroslava Vernerová, Jaroslav Kloužek, Mark Hall, Albert A. Kruger, Richard Pokorný
{"title":"Conversion degree and heat transfer in the cold cap and their effect on glass production rate in an electric melter","authors":"Pavel Ferkl, Pavel Hrma, Alexander Abboud, Donna Post Guillen, Miroslava Vernerová, Jaroslav Kloužek, Mark Hall, Albert A. Kruger, Richard Pokorný","doi":"10.1111/ijag.16615","DOIUrl":"10.1111/ijag.16615","url":null,"abstract":"<p>A predictive model of melt rate in waste glass vitrification operations is needed to inform melter operations during normal and off-normal operations. This paper describes the development of a model of the cold cap (the reacting melter feed floating on molten glass in a glass melter) that couples heat transfer with the feed-to-glass conversion kinetics. The model was applied to four melter feeds designed for high-level and low-activity nuclear waste feeds using the material properties, either measured or estimated, to obtain temperature and conversion distribution within the cold cap. The cold cap model, when coupled with a computational fluid dynamics model of a Joule-heated glass melter, allows the prediction of the glass production rate and power consumption. The results show reasonable agreement with the melting rates measured during pilot-scale melter tests.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 2","pages":"318-329"},"PeriodicalIF":2.1,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16615","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46683794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silver dissolution and precipitation in a Na\u0000 2\u0000 O‐ZnO‐B\u0000 2\u0000 O\u0000 3\u0000 metallization paste glass","authors":"Lina Heuser, M. Nofz, R. Müller, J. Deubener","doi":"10.1111/ijag.16613","DOIUrl":"https://doi.org/10.1111/ijag.16613","url":null,"abstract":"","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44840168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}