Pavel Ferkl, Pavel Hrma, Alexander Abboud, Donna Post Guillen, Miroslava Vernerová, Jaroslav Kloužek, Mark Hall, Albert A. Kruger, Richard Pokorný
{"title":"冷帽内的转换度和传热及其对电熔玻璃生产率的影响","authors":"Pavel Ferkl, Pavel Hrma, Alexander Abboud, Donna Post Guillen, Miroslava Vernerová, Jaroslav Kloužek, Mark Hall, Albert A. Kruger, Richard Pokorný","doi":"10.1111/ijag.16615","DOIUrl":null,"url":null,"abstract":"<p>A predictive model of melt rate in waste glass vitrification operations is needed to inform melter operations during normal and off-normal operations. This paper describes the development of a model of the cold cap (the reacting melter feed floating on molten glass in a glass melter) that couples heat transfer with the feed-to-glass conversion kinetics. The model was applied to four melter feeds designed for high-level and low-activity nuclear waste feeds using the material properties, either measured or estimated, to obtain temperature and conversion distribution within the cold cap. The cold cap model, when coupled with a computational fluid dynamics model of a Joule-heated glass melter, allows the prediction of the glass production rate and power consumption. The results show reasonable agreement with the melting rates measured during pilot-scale melter tests.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 2","pages":"318-329"},"PeriodicalIF":2.1000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16615","citationCount":"1","resultStr":"{\"title\":\"Conversion degree and heat transfer in the cold cap and their effect on glass production rate in an electric melter\",\"authors\":\"Pavel Ferkl, Pavel Hrma, Alexander Abboud, Donna Post Guillen, Miroslava Vernerová, Jaroslav Kloužek, Mark Hall, Albert A. Kruger, Richard Pokorný\",\"doi\":\"10.1111/ijag.16615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A predictive model of melt rate in waste glass vitrification operations is needed to inform melter operations during normal and off-normal operations. This paper describes the development of a model of the cold cap (the reacting melter feed floating on molten glass in a glass melter) that couples heat transfer with the feed-to-glass conversion kinetics. The model was applied to four melter feeds designed for high-level and low-activity nuclear waste feeds using the material properties, either measured or estimated, to obtain temperature and conversion distribution within the cold cap. The cold cap model, when coupled with a computational fluid dynamics model of a Joule-heated glass melter, allows the prediction of the glass production rate and power consumption. The results show reasonable agreement with the melting rates measured during pilot-scale melter tests.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"14 2\",\"pages\":\"318-329\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16615\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16615\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16615","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Conversion degree and heat transfer in the cold cap and their effect on glass production rate in an electric melter
A predictive model of melt rate in waste glass vitrification operations is needed to inform melter operations during normal and off-normal operations. This paper describes the development of a model of the cold cap (the reacting melter feed floating on molten glass in a glass melter) that couples heat transfer with the feed-to-glass conversion kinetics. The model was applied to four melter feeds designed for high-level and low-activity nuclear waste feeds using the material properties, either measured or estimated, to obtain temperature and conversion distribution within the cold cap. The cold cap model, when coupled with a computational fluid dynamics model of a Joule-heated glass melter, allows the prediction of the glass production rate and power consumption. The results show reasonable agreement with the melting rates measured during pilot-scale melter tests.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.