Yuandong Liu, Youzhi Liu, Haoqin Yang, Longbo Zhang, Kai Che, Linlin Xing
{"title":"NTMFF-DTA: Prediction of Drug-Target Affinity Based on Network Topology and Multi-feature Fusion.","authors":"Yuandong Liu, Youzhi Liu, Haoqin Yang, Longbo Zhang, Kai Che, Linlin Xing","doi":"10.1007/s12539-025-00692-9","DOIUrl":"https://doi.org/10.1007/s12539-025-00692-9","url":null,"abstract":"<p><p>Predicting drug-target binding affinity (DTA) is an important step in the complex process of drug discovery or drug repositioning. A large number of computational methods proposed for the task of DTA prediction utilize single features of proteins to measure drug-protein or protein-protein interactions, ignoring multi-feature fusion between protein-related features (e.g., solvent accessibility, protein pockets, secondary structures, and distance maps, etc.). To address the aforementioned constraints, we propose a new network topology and multi-feature fusion based approach for DTA prediction (NTMFF-DTA), which deeply mines protein multiple types of data and propagates drug information across domains. Data in drug-target interactions are often sparse, and multi-feature fusion can enrich data information by integrating multiple features, thus overcoming the data sparsity problem to some extent. The proposed approach offers two main contributions: (1) constructing a relationship-aware GAT that selectively focuses on the connections between nodes and edges in the molecular graph to capture the more central roles of nodes and edges in DTA prediction and (2) constructing an information propagation channel between different feature domains of drug proteins to achieve the sharing of the importance weight of drug atoms and edges, and combining with a multi-head self-attention mechanism to capture residue-enhancing features. The NTMFF-DTA model was comparatively tested against several leading baseline technologies on commonly used datasets. Experimental show that NTMFF-DTA can effectively and accurately predict DTA and outperform existing comparative models.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"scRDiT: Generating Single-cell RNA-seq Data by Diffusion Transformers and Accelerating Sampling.","authors":"Shengze Dong, Zhuorui Cui, Ding Liu, Jinzhi Lei","doi":"10.1007/s12539-025-00688-5","DOIUrl":"https://doi.org/10.1007/s12539-025-00688-5","url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) is a groundbreaking technology extensively utilized in biological research, facilitating the examination of gene expression at the individual cell level within a given tissue sample. While numerous tools have been developed for scRNA-seq data analysis, the challenge persists in capturing the distinct features of such data and replicating virtual datasets that share analogous statistical properties. Our study introduces a generative approach termed scRNA-seq Diffusion Transformer (scRDiT). This method generates virtual scRNA-seq data by leveraging a real dataset. The method is a neural network constructed based on Denoising Diffusion Probabilistic Models (DDPMs) and Diffusion Transformers (DiTs). This involves subjecting Gaussian noises to the real dataset through iterative noise-adding steps and ultimately restoring the noises to form scRNA-seq samples. This scheme allows us to learn data features from actual scRNA-seq samples during model training. Our experiments, conducted on two distinct scRNA-seq datasets, demonstrate superior performance. Additionally, the model sampling process is expedited by incorporating Denoising Diffusion Implicit Models (DDIMs). scRDiT presents a unified methodology empowering users to train neural network models with their unique scRNA-seq datasets, enabling the generation of numerous high-quality scRNA-seq samples.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143468010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NPI-HGNN: A Heterogeneous Graph Neural Network-Based Approach for Predicting ncRNA-Protein Interactions.","authors":"Xin Zhang, Haofeng Ma, Sizhe Wang, Hao Wu, Yu Jiang, Quanzhong Liu","doi":"10.1007/s12539-025-00689-4","DOIUrl":"https://doi.org/10.1007/s12539-025-00689-4","url":null,"abstract":"<p><p>Accurate identification of ncRNA-protein interactions (NPIs) is critical for understanding various cellular activities and biological functions of ncRNAs and proteins. Many sequence- and/or structure- and graph-based computational approaches have been developed to identify NPIs from large-scale ncRNA and protein data in a high-throughput manner. However, many sequence- and/or structure- and graph-based computational approaches often ignore either the topological information in NPIs or the influence of other molecule networks on NPI prediction. In this work, we propose NPI-HGNN, an end-to-end graph neural network (GNN)-based approach for the identification of NPIs from a large heterogeneous network, consisting of the ncRNA-protein interaction network, the ncRNA-ncRNA similarity network, and the protein-protein interaction network. To our knowledge, NPI-HGNN is the first GNN-based predictor that integrates related heterogeneous networks for NPI prediction. Experiments on five benchmarking datasets demonstrate that NPI-HGNN outperformed several state-of-the-art sequence- and/or structure- and graph-based predictors. In addition, we showcased the prediction power of NPI-HGNN by identifying 12 interacting ncRNAs of the pre-mRNA 3' end processing protein, which indicates the effectiveness of the proposed model. The source code of NPI-HGNN is freely available for academic purposes at https://github.com/zhangxin11111/NPI-HGNN .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143467996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guicong Sun, Mengxin Zheng, Yongxian Fan, Xiaoyong Pan
{"title":"MVGNCDA: Identifying Potential circRNA-Disease Associations Based on Multi-view Graph Convolutional Networks and Network Embeddings.","authors":"Guicong Sun, Mengxin Zheng, Yongxian Fan, Xiaoyong Pan","doi":"10.1007/s12539-025-00690-x","DOIUrl":"https://doi.org/10.1007/s12539-025-00690-x","url":null,"abstract":"<p><p>Increasing evidences have indicated that circular RNAs play a crucial role in the onset and progression of various diseases. However, exploring potential disease-associated circRNAs using conventional experimental techniques remains both time-intensive and costly. Recently, various computational approaches have been developed to detect the circRNA-disease associations. Nevertheless, due to the sparsity of the data and the inefficient utilization of similarity representation, it is still a challenge to effectively detect unknown circRNA-disease associations using multisource data. In this work, we propose an innovative computational framework, MVGNCDA, which merges a multi-view graph convolutional network (GCN) and biased random walk-based network embeddings to evaluate potential circRNA-disease associations from multisource data. First, we calculate disease semantic similarity, circRNA functional similarity, and their Gaussian interaction profile (GIP) kernel and cosine similarity. MVGNCDA utilizes multi-view GCNs to extract local node embeddings of diseases and circRNAs in the context of multisource information. Then, we construct a heterogeneous network utilizing integrated similarity and verified circRNA-disease associations, which is subsequently used to learn global node embeddings. Furthermore, the final fused local and global node embeddings are decoded to evaluate the circRNA-disease associations using a bilinear decoder. The fivefold cross-validation results demonstrate that MVGNCDA outperforms existing methods across five public datasets. Moreover, case study also confirms that MVGNCDA is capable of efficiently identifying unknown circRNA-disease associations.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction of Multimorbidity Network Evolution in Middle-Aged and Elderly Population Based on CE-GCN.","authors":"Yushi Che, Yiqiao Wang","doi":"10.1007/s12539-024-00685-0","DOIUrl":"https://doi.org/10.1007/s12539-024-00685-0","url":null,"abstract":"<p><strong>Purpose: </strong>With the evolving disease spectrum, chronic diseases have emerged as a primary burden and a leading cause of mortality. Due to the aging population and the nature of chronic illnesses, patients often suffer from multimorbidity. Predicting the likelihood of these patients developing specific diseases in the future based on their current health status and age factors is a crucial task in multimorbidity research.</p><p><strong>Methods: </strong>We propose an algorithm, CE-GCN, which integrates age sequence and embeds Graph Convolutional Network (GCN) into Gated Recurrent Unit (GRU), utilizing the topological feature of network common neighbors to predict links in dynamic complex networks. First, we constructed a disease evolution network spanning from ages 45 to 90 years old using disease information from 3333 patients. Then, we introduced an innovative approach for link prediction aimed at uncovering relationships between various diseases. This method takes into account patients' age to construct the evolutionary structure of the disease network, thereby predicting the connections between chronic diseases.</p><p><strong>Results: </strong>Results from experiments conducted on real networks indicate that our model surpasses others regarding both MRR and MAP. The proposed method accurately reveals associations between diseases and effectively captures future disease risks.</p><p><strong>Conclusion: </strong>Our model can serve as an objective and convenient computer-aided tool to identify hidden relationships between diseases in order to assist healthcare professionals in taking early disease interventions, which can substantially lower the costs associated with treating multimorbidity and enhance the quality of life for patients suffering from chronic conditions.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Multi-View Feature-Based Interpretable Deep Learning Framework for Drug-Drug Interaction Prediction.","authors":"Zihui Cheng, Zhaojing Wang, Xianfang Tang, Xinrong Hu, Fei Yang, Xiaoyun Yan","doi":"10.1007/s12539-025-00687-6","DOIUrl":"https://doi.org/10.1007/s12539-025-00687-6","url":null,"abstract":"<p><p>Drug-drug interactions (DDIs) can result in deleterious consequences when patients take multiple medications simultaneously, emphasizing the critical need for accurate DDI prediction. Computational methods for DDI prediction have garnered recent attention. However, current approaches concentrate solely on single-view features, such as atomic-view or substructure-view features, limiting predictive capacity. The scarcity of research on interpretability studies based on multi-view features is crucial for tracing interactions. Addressing this gap, we present MI-DDI, a multi-view feature-based interpretable deep learning framework for DDI. To fully extract multi-view features, we employ a Message Passing Neural Network (MPNN) to learn atomic features from molecular graphs generated by RDkit, and transformer encoders are used to learn substructure-view embeddings from drug SMILES simultaneously. These atomic-view and substructure-view features are then amalgamated into a holistic drug embedding matrix. Subsequently, an intricately designed interaction module not only establishes a tractable path for understanding interactions but also directly informs the construction of weight matrices, enabling precise and interpretable interaction predictions. Validation on the BIOSNAP dataset and DrugBank dataset demonstrates MI-DDI's superiority. It surpasses the current benchmarks by a substantial average of 3% on BIOSNAP and 1% on DrugBank. Additional experiments underscore the significance of atomic-view information for DDI prediction and confirm that our interaction module indeed learns more effective information for DDI prediction. The source codes are available at https://github.com/ZihuiCheng/MI-DDI .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive Multi-Kernel Graph Neural Network for Drug-Drug Interaction Prediction.","authors":"Linqian Zhao, Junliang Shang, Xianghan Meng, Xin He, Yuanyuan Zhang, Jin-Xing Liu","doi":"10.1007/s12539-024-00684-1","DOIUrl":"https://doi.org/10.1007/s12539-024-00684-1","url":null,"abstract":"<p><p> Combination therapy, which synergistically enhances treatment efficacy and inhibits disease progression through the combined effects of multiple drugs, has emerged as a mainstream approach for treating complex diseases and alleviating symptoms. However, drug-drug interactions (DDIs) can sometimes lead to adverse reactions, potentially endangering lives. Therefore, developing efficient and accurate DDI prediction methods is crucial for elucidating drug mechanisms and preventing side effects. Current prediction methods often focus solely on the presence of interactions between drugs when constructing DDI graphs, neglecting the specific types of DDIs. This oversight can result in a decline in predictive performance. To address this issue, we propose an Adaptive Multi-Kernel Graph Neural Network (AMKGNN) for DDI prediction. AMKGNN differentiates DDIs into increase-type and decrease-type interactions, constructing separate increased DDI and decreased DDI graphs as convolutional kernels. AMKGNN employs a graph kernel learning mechanism that adaptively determines the optimal threshold between high-frequency and low-frequency signals in the network to capture node embeddings. Initially, AMKGNN learns drug embedding representations based on these two graph convolutional kernels and various drug features. These representations are then concatenated and input into a deep neural network to predict potential DDIs. The results show that our model achieved AUC and AUPR values above 90% across three sub-tasks on two datasets, significantly outperforming the other five comparison models. Furthermore, ablation experiments and case studies validate the superiority of AMKGNN.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconstructing Waddington Landscape from Cell Migration and Proliferation.","authors":"Yourui Han, Bolin Chen, Zhongwen Bi, Jianjun Zhang, Youpeng Hu, Jun Bian, Ruiming Kang, Xuequn Shang","doi":"10.1007/s12539-024-00686-z","DOIUrl":"https://doi.org/10.1007/s12539-024-00686-z","url":null,"abstract":"<p><p>The Waddington landscape was initially proposed to depict cell differentiation, and has been extended to explain phenomena such as reprogramming. The landscape serves as a concrete representation of cellular differentiation potential, yet the precise representation of this potential remains an unsolved problem, posing significant challenges to reconstructing the Waddington landscape. The characterization of cellular differentiation potential relies on transcriptomic signatures of known markers typically. Numerous computational models based on various energy indicators, such as Shannon entropy, have been proposed. While these models can effectively characterize cellular differentiation potential, most of them lack corresponding dynamical interpretations, which are crucial for enhancing our understanding of cell fate transitions. Therefore, from the perspective of cell migration and proliferation, a feasible framework was developed for calculating the dynamically interpretable energy indicator to reconstruct Waddington landscape based on sparse autoencoders and the reaction diffusion advection equation. Within this framework, typical cellular developmental processes, such as hematopoiesis and reprogramming processes, were dynamically simulated and their corresponding Waddington landscapes were reconstructed. Furthermore, dynamic simulation and reconstruction were also conducted for special developmental processes, such as embryogenesis and Epithelial-Mesenchymal Transition process. Ultimately, these diverse cell fate transitions were amalgamated into a unified Waddington landscape.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxin Du, Jingwei Li, Bo Wang, Jianfei Zhang, Tongxuan Wang, Junqi Wang
{"title":"NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields.","authors":"Xiaoxin Du, Jingwei Li, Bo Wang, Jianfei Zhang, Tongxuan Wang, Junqi Wang","doi":"10.1007/s12539-024-00678-z","DOIUrl":"https://doi.org/10.1007/s12539-024-00678-z","url":null,"abstract":"<p><p>The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed. Then, a Graph Convolutional Network incorporating a fusion residual network mechanism (REGCN) is utilized to learn meaningful high-order similarity features. In addition, conditional random fields (CRF) are applied to ensure that microbes and drugs have similar feature embeddings. Finally, unobserved microbe-drug associations are scored based on combined embeddings. The experimental findings demonstrate that the NRGCNMDA approach outperforms several existing deep learning methods, and its AUC and AUPR values are 95.16% and 93.02%, respectively. The case study demonstrates that NRGCNMDA accurately predicts drugs associated with Enterococcus faecalis and Listeria monocytogenes, as well as microbes associated with ibuprofen and tetracycline.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Domain Adaptive Interpretable Substructure-Aware Graph Attention Network for Drug-Drug Interaction Prediction.","authors":"Qi Zhang, Yuxiao Wei, Liwei Liu","doi":"10.1007/s12539-024-00680-5","DOIUrl":"https://doi.org/10.1007/s12539-024-00680-5","url":null,"abstract":"<p><p>Accurate prediction of drug-drug interaction (DDI) is essential to improve clinical efficacy, avoid adverse effects of drug combination therapy, and enhance drug safety. Recently researchers have developed several computer-aided methods for DDI prediction. However, these methods lack the substructural features that are critical to drug interactions and are not effective in generalizing across domains and different distribution data. In this work, we present SAGAN, a domain adaptive interpretable substructure-aware graph attention network for DDI prediction. Based on attention mechanism and unsupervised clustering algorithm, we propose a new substructure segmentation method, which segments the drug molecule into multiple substructures, learns the mechanism of drug interaction from the perspective of interaction, and identifies important interaction regions between drugs. To enhance the generalization ability of the model, we improve and apply a conditional domain adversarial network to achieve cross-domain generalization by alternately optimizing the cross-entropy loss on the source domain and the adversarial loss of the domain discriminator. We evaluate and compare SAGAN with the state-of-the-art DDI prediction model on four real-world datasets for both in-domain and cross-domain scenarios, and show that SAGAN achieves the best overall performance. Moreover, the visualization results of the model show that SAGAN has achieved pharmacologically significant substructure extraction, which can help drug developers screen for some undiscovered local interaction sites, and provide important information for further drug structure optimization. The codes and datasets are available online at https://github.com/wyx2012/SAGAN .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}