Fan Zhang, Chaoyang Liu, Binjie Wang, Xiaopan Chen, Xinhong Zhang
{"title":"NPI-HetGNN:基于异构图神经网络的ncrna -蛋白相互作用预测模型。","authors":"Fan Zhang, Chaoyang Liu, Binjie Wang, Xiaopan Chen, Xinhong Zhang","doi":"10.1007/s12539-025-00716-4","DOIUrl":null,"url":null,"abstract":"<p><p>Non-coding RNAs (ncRNAs) are one of the components of epigenetic mechanisms that regulates gene expression. Studying ncRNA-protein interactions (NPI) can help to explore a wide range of biological features and related diseases. Traditional NPI research methods often require expensive equipment, a lot of time and labor. With the abundant samples accumulated from traditional experiments, remarkable progress has been made in the study of NPI by computational methods. Heterogeneous graph neural network is a deep learning method that synthesizes heterogeneous types of data as well as network topology. In this study, we propose an NPI-HetGNN model for NPI prediction based on heterogeneous graph neural networks. Firstly, initial features are constructed by integrating the sequence properties of ncRNA and protein data as well as the topology of heterogeneous connections. Then, the multilevel homogeneous subgraph is obtained and its semantic information is aggregated by metapath walking. At the same time, the homogeneous node information is fused within the subgraph metapath. To enhance feature extraction ability of the network, an energy-constrained self-attention module is introduced. Due to the lack of wet lab validation conditions, this study adopts computational verification. The performance of the NPI-HetGNN model on four benchmark datasets is experimentally verified. Ablation experiments also confirmed the comprehensiveness and validity of our model design. The experimental results show that comparing with six state-of-the-art methods, our NPI-HetGNN achieves very satisfactory results on all four datasets.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"730-743"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NPI-HetGNN: A Prediction Model of ncRNA-Protein Interactions Based on Heterogeneous Graph Neural Networks.\",\"authors\":\"Fan Zhang, Chaoyang Liu, Binjie Wang, Xiaopan Chen, Xinhong Zhang\",\"doi\":\"10.1007/s12539-025-00716-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-coding RNAs (ncRNAs) are one of the components of epigenetic mechanisms that regulates gene expression. Studying ncRNA-protein interactions (NPI) can help to explore a wide range of biological features and related diseases. Traditional NPI research methods often require expensive equipment, a lot of time and labor. With the abundant samples accumulated from traditional experiments, remarkable progress has been made in the study of NPI by computational methods. Heterogeneous graph neural network is a deep learning method that synthesizes heterogeneous types of data as well as network topology. In this study, we propose an NPI-HetGNN model for NPI prediction based on heterogeneous graph neural networks. Firstly, initial features are constructed by integrating the sequence properties of ncRNA and protein data as well as the topology of heterogeneous connections. Then, the multilevel homogeneous subgraph is obtained and its semantic information is aggregated by metapath walking. At the same time, the homogeneous node information is fused within the subgraph metapath. To enhance feature extraction ability of the network, an energy-constrained self-attention module is introduced. Due to the lack of wet lab validation conditions, this study adopts computational verification. The performance of the NPI-HetGNN model on four benchmark datasets is experimentally verified. Ablation experiments also confirmed the comprehensiveness and validity of our model design. The experimental results show that comparing with six state-of-the-art methods, our NPI-HetGNN achieves very satisfactory results on all four datasets.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"730-743\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00716-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00716-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
NPI-HetGNN: A Prediction Model of ncRNA-Protein Interactions Based on Heterogeneous Graph Neural Networks.
Non-coding RNAs (ncRNAs) are one of the components of epigenetic mechanisms that regulates gene expression. Studying ncRNA-protein interactions (NPI) can help to explore a wide range of biological features and related diseases. Traditional NPI research methods often require expensive equipment, a lot of time and labor. With the abundant samples accumulated from traditional experiments, remarkable progress has been made in the study of NPI by computational methods. Heterogeneous graph neural network is a deep learning method that synthesizes heterogeneous types of data as well as network topology. In this study, we propose an NPI-HetGNN model for NPI prediction based on heterogeneous graph neural networks. Firstly, initial features are constructed by integrating the sequence properties of ncRNA and protein data as well as the topology of heterogeneous connections. Then, the multilevel homogeneous subgraph is obtained and its semantic information is aggregated by metapath walking. At the same time, the homogeneous node information is fused within the subgraph metapath. To enhance feature extraction ability of the network, an energy-constrained self-attention module is introduced. Due to the lack of wet lab validation conditions, this study adopts computational verification. The performance of the NPI-HetGNN model on four benchmark datasets is experimentally verified. Ablation experiments also confirmed the comprehensiveness and validity of our model design. The experimental results show that comparing with six state-of-the-art methods, our NPI-HetGNN achieves very satisfactory results on all four datasets.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.