{"title":"NPI-HGNN: A Heterogeneous Graph Neural Network-Based Approach for Predicting ncRNA-Protein Interactions.","authors":"Xin Zhang, Haofeng Ma, Sizhe Wang, Hao Wu, Yu Jiang, Quanzhong Liu","doi":"10.1007/s12539-025-00689-4","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of ncRNA-protein interactions (NPIs) is critical for understanding various cellular activities and biological functions of ncRNAs and proteins. Many sequence- and/or structure- and graph-based computational approaches have been developed to identify NPIs from large-scale ncRNA and protein data in a high-throughput manner. However, many sequence- and/or structure- and graph-based computational approaches often ignore either the topological information in NPIs or the influence of other molecule networks on NPI prediction. In this work, we propose NPI-HGNN, an end-to-end graph neural network (GNN)-based approach for the identification of NPIs from a large heterogeneous network, consisting of the ncRNA-protein interaction network, the ncRNA-ncRNA similarity network, and the protein-protein interaction network. To our knowledge, NPI-HGNN is the first GNN-based predictor that integrates related heterogeneous networks for NPI prediction. Experiments on five benchmarking datasets demonstrate that NPI-HGNN outperformed several state-of-the-art sequence- and/or structure- and graph-based predictors. In addition, we showcased the prediction power of NPI-HGNN by identifying 12 interacting ncRNAs of the pre-mRNA 3' end processing protein, which indicates the effectiveness of the proposed model. The source code of NPI-HGNN is freely available for academic purposes at https://github.com/zhangxin11111/NPI-HGNN .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00689-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of ncRNA-protein interactions (NPIs) is critical for understanding various cellular activities and biological functions of ncRNAs and proteins. Many sequence- and/or structure- and graph-based computational approaches have been developed to identify NPIs from large-scale ncRNA and protein data in a high-throughput manner. However, many sequence- and/or structure- and graph-based computational approaches often ignore either the topological information in NPIs or the influence of other molecule networks on NPI prediction. In this work, we propose NPI-HGNN, an end-to-end graph neural network (GNN)-based approach for the identification of NPIs from a large heterogeneous network, consisting of the ncRNA-protein interaction network, the ncRNA-ncRNA similarity network, and the protein-protein interaction network. To our knowledge, NPI-HGNN is the first GNN-based predictor that integrates related heterogeneous networks for NPI prediction. Experiments on five benchmarking datasets demonstrate that NPI-HGNN outperformed several state-of-the-art sequence- and/or structure- and graph-based predictors. In addition, we showcased the prediction power of NPI-HGNN by identifying 12 interacting ncRNAs of the pre-mRNA 3' end processing protein, which indicates the effectiveness of the proposed model. The source code of NPI-HGNN is freely available for academic purposes at https://github.com/zhangxin11111/NPI-HGNN .
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.