迈向可靠的医疗影像:医学影像分割中类不平衡处理的多方位方法。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Lijuan Cui, Mingquan Xu, Chao Liu, Tianyu Liu, Xiaoting Yan, Yan Zhang, Xiaofeng Yang
{"title":"迈向可靠的医疗影像:医学影像分割中类不平衡处理的多方位方法。","authors":"Lijuan Cui, Mingquan Xu, Chao Liu, Tianyu Liu, Xiaoting Yan, Yan Zhang, Xiaofeng Yang","doi":"10.1007/s12539-025-00726-2","DOIUrl":null,"url":null,"abstract":"<p><p>Class imbalance is a dominant challenge in medical image segmentation when dealing with MRI images from highly imbalanced datasets. This study introduces a comprehensive, multifaceted approach to enhance the accuracy and reliability of segmentation models under such conditions. Our model integrates advanced data augmentation, innovative algorithmic adjustments, and novel architectural features to address class label distribution effectively. To ensure the multiple aspects of training process, we have customized the data augmentation technique for medical imaging with multi-dimensional angles. The multi-dimensional augmentation technique helps to reduce the bias towards majority classes. We have implemented novel attention mechanisms, i.e., Enhanced Attention Module (EAM) and spatial attention. These attention mechanisms enhance the focus of the model on the most relevant features. Further, our architecture incorporates a dual decoder system and Pooling Integration Layer (PIL) to capture accurate foreground and background details. We also introduce a hybrid loss function, which is designed to handle the class imbalance by guiding the training process. For experimental purposes, we have used multiple datasets such as Digital Database Thyroid Image (DDTI), Breast Ultrasound Images Dataset (BUSI) and LiTS MICCAI 2017 to demonstrate the prowess of the proposed network using key evaluation metrics, i.e., IoU, Dice coefficient, precision, and recall.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Reliable Healthcare Imaging: A Multifaceted Approach in Class Imbalance Handling for Medical Image Segmentation.\",\"authors\":\"Lijuan Cui, Mingquan Xu, Chao Liu, Tianyu Liu, Xiaoting Yan, Yan Zhang, Xiaofeng Yang\",\"doi\":\"10.1007/s12539-025-00726-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Class imbalance is a dominant challenge in medical image segmentation when dealing with MRI images from highly imbalanced datasets. This study introduces a comprehensive, multifaceted approach to enhance the accuracy and reliability of segmentation models under such conditions. Our model integrates advanced data augmentation, innovative algorithmic adjustments, and novel architectural features to address class label distribution effectively. To ensure the multiple aspects of training process, we have customized the data augmentation technique for medical imaging with multi-dimensional angles. The multi-dimensional augmentation technique helps to reduce the bias towards majority classes. We have implemented novel attention mechanisms, i.e., Enhanced Attention Module (EAM) and spatial attention. These attention mechanisms enhance the focus of the model on the most relevant features. Further, our architecture incorporates a dual decoder system and Pooling Integration Layer (PIL) to capture accurate foreground and background details. We also introduce a hybrid loss function, which is designed to handle the class imbalance by guiding the training process. For experimental purposes, we have used multiple datasets such as Digital Database Thyroid Image (DDTI), Breast Ultrasound Images Dataset (BUSI) and LiTS MICCAI 2017 to demonstrate the prowess of the proposed network using key evaluation metrics, i.e., IoU, Dice coefficient, precision, and recall.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00726-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00726-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当处理来自高度不平衡数据集的MRI图像时,类不平衡是医学图像分割的主要挑战。本研究引入了一种全面的、多方面的方法来提高在这种情况下分割模型的准确性和可靠性。我们的模型集成了先进的数据增强、创新的算法调整和新颖的架构特征,以有效地解决类别标签分布问题。为了保证培训过程的多方位,我们定制了多维角度医学成像的数据增强技术。多维增强技术有助于减少对大多数阶级的偏见。我们已经实现了新的注意机制,即增强注意模块(EAM)和空间注意。这些注意机制增强了模型对最相关特征的关注。此外,我们的架构结合了一个双解码器系统和池集成层(PIL)来捕获准确的前景和背景细节。我们还引入了一个混合损失函数,通过指导训练过程来处理类不平衡。出于实验目的,我们使用了多个数据集,如数字数据库甲状腺图像(DDTI),乳房超声图像数据集(BUSI)和LiTS MICCAI 2017,以使用关键评估指标(即IoU, Dice系数,精度和召回率)来展示所提出网络的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Reliable Healthcare Imaging: A Multifaceted Approach in Class Imbalance Handling for Medical Image Segmentation.

Class imbalance is a dominant challenge in medical image segmentation when dealing with MRI images from highly imbalanced datasets. This study introduces a comprehensive, multifaceted approach to enhance the accuracy and reliability of segmentation models under such conditions. Our model integrates advanced data augmentation, innovative algorithmic adjustments, and novel architectural features to address class label distribution effectively. To ensure the multiple aspects of training process, we have customized the data augmentation technique for medical imaging with multi-dimensional angles. The multi-dimensional augmentation technique helps to reduce the bias towards majority classes. We have implemented novel attention mechanisms, i.e., Enhanced Attention Module (EAM) and spatial attention. These attention mechanisms enhance the focus of the model on the most relevant features. Further, our architecture incorporates a dual decoder system and Pooling Integration Layer (PIL) to capture accurate foreground and background details. We also introduce a hybrid loss function, which is designed to handle the class imbalance by guiding the training process. For experimental purposes, we have used multiple datasets such as Digital Database Thyroid Image (DDTI), Breast Ultrasound Images Dataset (BUSI) and LiTS MICCAI 2017 to demonstrate the prowess of the proposed network using key evaluation metrics, i.e., IoU, Dice coefficient, precision, and recall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信