{"title":"HiSVision:一种基于Hi-C数据和检测变压器的大规模结构变化检测方法。","authors":"Haixia Zhai, Chengyao Dong, Tao Wang, Junwei Luo","doi":"10.1007/s12539-024-00677-0","DOIUrl":null,"url":null,"abstract":"<p><p>Structural variation (SV) is an important component of the diversity of the human genome. Many studies have shown that SV has a significant impact on human disease and is strongly associated with the development of cancer. In recent years, the Hi-C sequencing technique has been shown to be useful for detecting large-scale SVs, and several methods have been proposed for identifying SVs from Hi-C data. However, due to the complexity of the 3D genome structure, accurate identifying SVs from the Hi-C contact matrix remains a challenging task. Here, we present HiSVision, a method for identifying large-scale SVs from Hi-C data using a detection transformer framework. Inspired by object detection network, we transform the Hi-C contact matrix into images, then identify candidate SV regions on the image by detection transformer, and finally filter SVs based on features around the breakpoints. Experimental results show that HiSVision outperforms existing methods in terms of precision and F1 score on cancer cell lines and simulated datasets. The source code and data are available from https://github.com/dcy99/HiSVision .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HiSVision: A Method for Detecting Large-Scale Structural Variations Based on Hi-C Data and Detection Transformer.\",\"authors\":\"Haixia Zhai, Chengyao Dong, Tao Wang, Junwei Luo\",\"doi\":\"10.1007/s12539-024-00677-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural variation (SV) is an important component of the diversity of the human genome. Many studies have shown that SV has a significant impact on human disease and is strongly associated with the development of cancer. In recent years, the Hi-C sequencing technique has been shown to be useful for detecting large-scale SVs, and several methods have been proposed for identifying SVs from Hi-C data. However, due to the complexity of the 3D genome structure, accurate identifying SVs from the Hi-C contact matrix remains a challenging task. Here, we present HiSVision, a method for identifying large-scale SVs from Hi-C data using a detection transformer framework. Inspired by object detection network, we transform the Hi-C contact matrix into images, then identify candidate SV regions on the image by detection transformer, and finally filter SVs based on features around the breakpoints. Experimental results show that HiSVision outperforms existing methods in terms of precision and F1 score on cancer cell lines and simulated datasets. The source code and data are available from https://github.com/dcy99/HiSVision .</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00677-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00677-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
HiSVision: A Method for Detecting Large-Scale Structural Variations Based on Hi-C Data and Detection Transformer.
Structural variation (SV) is an important component of the diversity of the human genome. Many studies have shown that SV has a significant impact on human disease and is strongly associated with the development of cancer. In recent years, the Hi-C sequencing technique has been shown to be useful for detecting large-scale SVs, and several methods have been proposed for identifying SVs from Hi-C data. However, due to the complexity of the 3D genome structure, accurate identifying SVs from the Hi-C contact matrix remains a challenging task. Here, we present HiSVision, a method for identifying large-scale SVs from Hi-C data using a detection transformer framework. Inspired by object detection network, we transform the Hi-C contact matrix into images, then identify candidate SV regions on the image by detection transformer, and finally filter SVs based on features around the breakpoints. Experimental results show that HiSVision outperforms existing methods in terms of precision and F1 score on cancer cell lines and simulated datasets. The source code and data are available from https://github.com/dcy99/HiSVision .
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.