{"title":"基于图神经网络的计算药物重新定位与大语言模型参考知识表示。","authors":"Yaowen Gu, Zidu Xu, Carl Yang","doi":"10.1007/s12539-024-00654-7","DOIUrl":null,"url":null,"abstract":"<p><p>Computational drug repositioning, through predicting drug-disease associations (DDA), offers significant potential for discovering new drug indications. Current methods incorporate graph neural networks (GNN) on drug-disease heterogeneous networks to predict DDAs, achieving notable performances compared to traditional machine learning and matrix factorization approaches. However, these methods depend heavily on network topology, hampered by incomplete and noisy network data, and overlook the wealth of biomedical knowledge available. Correspondingly, large language models (LLMs) excel in graph search and relational reasoning, which can possibly enhance the integration of comprehensive biomedical knowledge into drug and disease profiles. In this study, we first investigate the contribution of LLM-inferred knowledge representation in drug repositioning and DDA prediction. A zero-shot prompting template was designed for LLM to extract high-quality knowledge descriptions for drug and disease entities, followed by embedding generation from language models to transform the discrete text to continual numerical representation. Then, we proposed LLM-DDA with three different model architectures (LLM-DDA<sub>Node Feat</sub>, LLM-DDA<sub>Dual GNN</sub>, LLM-DDA<sub>GNN-AE</sub>) to investigate the best fusion mode for LLM-based embeddings. Extensive experiments on four DDA benchmarks show that, LLM-DDA<sub>GNN-AE</sub> achieved the optimal performance compared to 11 baselines with the overall relative improvement in AUPR of 23.22%, F1-Score of 17.20%, and precision of 25.35%. Meanwhile, selected case studies of involving Prednisone and Allergic Rhinitis highlighted the model's capability to identify reliable DDAs and knowledge descriptions, supported by existing literature. This study showcases the utility of LLMs in drug repositioning with its generality and applicability in other biomedical relation prediction tasks.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empowering Graph Neural Network-Based Computational Drug Repositioning with Large Language Model-Inferred Knowledge Representation.\",\"authors\":\"Yaowen Gu, Zidu Xu, Carl Yang\",\"doi\":\"10.1007/s12539-024-00654-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational drug repositioning, through predicting drug-disease associations (DDA), offers significant potential for discovering new drug indications. Current methods incorporate graph neural networks (GNN) on drug-disease heterogeneous networks to predict DDAs, achieving notable performances compared to traditional machine learning and matrix factorization approaches. However, these methods depend heavily on network topology, hampered by incomplete and noisy network data, and overlook the wealth of biomedical knowledge available. Correspondingly, large language models (LLMs) excel in graph search and relational reasoning, which can possibly enhance the integration of comprehensive biomedical knowledge into drug and disease profiles. In this study, we first investigate the contribution of LLM-inferred knowledge representation in drug repositioning and DDA prediction. A zero-shot prompting template was designed for LLM to extract high-quality knowledge descriptions for drug and disease entities, followed by embedding generation from language models to transform the discrete text to continual numerical representation. Then, we proposed LLM-DDA with three different model architectures (LLM-DDA<sub>Node Feat</sub>, LLM-DDA<sub>Dual GNN</sub>, LLM-DDA<sub>GNN-AE</sub>) to investigate the best fusion mode for LLM-based embeddings. Extensive experiments on four DDA benchmarks show that, LLM-DDA<sub>GNN-AE</sub> achieved the optimal performance compared to 11 baselines with the overall relative improvement in AUPR of 23.22%, F1-Score of 17.20%, and precision of 25.35%. Meanwhile, selected case studies of involving Prednisone and Allergic Rhinitis highlighted the model's capability to identify reliable DDAs and knowledge descriptions, supported by existing literature. This study showcases the utility of LLMs in drug repositioning with its generality and applicability in other biomedical relation prediction tasks.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00654-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00654-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Empowering Graph Neural Network-Based Computational Drug Repositioning with Large Language Model-Inferred Knowledge Representation.
Computational drug repositioning, through predicting drug-disease associations (DDA), offers significant potential for discovering new drug indications. Current methods incorporate graph neural networks (GNN) on drug-disease heterogeneous networks to predict DDAs, achieving notable performances compared to traditional machine learning and matrix factorization approaches. However, these methods depend heavily on network topology, hampered by incomplete and noisy network data, and overlook the wealth of biomedical knowledge available. Correspondingly, large language models (LLMs) excel in graph search and relational reasoning, which can possibly enhance the integration of comprehensive biomedical knowledge into drug and disease profiles. In this study, we first investigate the contribution of LLM-inferred knowledge representation in drug repositioning and DDA prediction. A zero-shot prompting template was designed for LLM to extract high-quality knowledge descriptions for drug and disease entities, followed by embedding generation from language models to transform the discrete text to continual numerical representation. Then, we proposed LLM-DDA with three different model architectures (LLM-DDANode Feat, LLM-DDADual GNN, LLM-DDAGNN-AE) to investigate the best fusion mode for LLM-based embeddings. Extensive experiments on four DDA benchmarks show that, LLM-DDAGNN-AE achieved the optimal performance compared to 11 baselines with the overall relative improvement in AUPR of 23.22%, F1-Score of 17.20%, and precision of 25.35%. Meanwhile, selected case studies of involving Prednisone and Allergic Rhinitis highlighted the model's capability to identify reliable DDAs and knowledge descriptions, supported by existing literature. This study showcases the utility of LLMs in drug repositioning with its generality and applicability in other biomedical relation prediction tasks.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.