Inhalation Toxicology最新文献

筛选
英文 中文
Short-term hyperoxia induced mitochondrial respiratory chain complexes dysfunction and oxidative stress in lung of rats. 短期高氧诱导大鼠肺线粒体呼吸链复合物功能障碍和氧化应激。
IF 2.1 4区 医学
Inhalation Toxicology Pub Date : 2024-03-01 Epub Date: 2024-03-06 DOI: 10.1080/08958378.2024.2322497
Leonardo Tenfen, Richard Simon Machado, Khiany Mathias, Natalia Piacentini, Larissa Joaquim, Sandra Bonfante, Lucineia Gainski Danielski, Nicole Alessandra Engel, Mariella Reinol da Silva, Gislaine Tezza Rezin, Rafaella Willig de Quadros, Fernanda Frederico Gava, Fabricia Petronilho
{"title":"Short-term hyperoxia induced mitochondrial respiratory chain complexes dysfunction and oxidative stress in lung of rats.","authors":"Leonardo Tenfen, Richard Simon Machado, Khiany Mathias, Natalia Piacentini, Larissa Joaquim, Sandra Bonfante, Lucineia Gainski Danielski, Nicole Alessandra Engel, Mariella Reinol da Silva, Gislaine Tezza Rezin, Rafaella Willig de Quadros, Fernanda Frederico Gava, Fabricia Petronilho","doi":"10.1080/08958378.2024.2322497","DOIUrl":"10.1080/08958378.2024.2322497","url":null,"abstract":"<p><strong>Background: </strong>Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress.</p><p><strong>Methods: </strong>Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO<sub>2</sub>) and hyperoxia (FIO<sub>2</sub> = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses.</p><p><strong>Results: </strong>Hyperoxia (FIO<sub>2</sub> = 60%) increased PaCO<sub>2</sub> and PaO<sub>2</sub>, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO<sub>2</sub> = 60% decreased SOD activity and caused several histologic changes.</p><p><strong>Conclusion: </strong>In conclusion, we have experimentally demonstrated that short-term exposure to high FIO<sub>2</sub> can cause oxidative stress in the lung.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140049376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological effects of diesel exhaust inhalation. III cardiovascular function. 吸入柴油废气对生物的影响。III 心血管功能。
IF 2.1 4区 医学
Inhalation Toxicology Pub Date : 2024-03-01 Epub Date: 2024-03-11 DOI: 10.1080/08958378.2024.2327364
Kristine Krajnak, Hong Kan, Janet A Thompson, Walter McKinney, Stacey Waugh, Tim South, Dru Burns, Ryan Lebouf, Jared Cumpston, Theresa Boots, Jeffrey S Fedan
{"title":"Biological effects of diesel exhaust inhalation. III cardiovascular function.","authors":"Kristine Krajnak, Hong Kan, Janet A Thompson, Walter McKinney, Stacey Waugh, Tim South, Dru Burns, Ryan Lebouf, Jared Cumpston, Theresa Boots, Jeffrey S Fedan","doi":"10.1080/08958378.2024.2327364","DOIUrl":"10.1080/08958378.2024.2327364","url":null,"abstract":"<p><strong>Objective: </strong>Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust.</p><p><strong>Materials and methods: </strong>The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m<sup>3</sup> DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust.</p><p><strong>Results: </strong>Exposure to 0.2 mg/m<sup>3</sup> DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m<sup>3</sup> DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression.</p><p><strong>Discussion and conclusions: </strong>Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of neural reflex activation as a potential mode of action for respiratory and cardiovascular effects of fine particulate matter. 评估神经反射激活作为细颗粒物对呼吸和心血管影响的潜在作用模式。
IF 2.1 4区 医学
Inhalation Toxicology Pub Date : 2024-03-01 Epub Date: 2024-03-15 DOI: 10.1080/08958378.2024.2324033
Robyn L Prueitt, Cassandra J Meakin, Nicholas L Drury, Julie E Goodman
{"title":"Evaluation of neural reflex activation as a potential mode of action for respiratory and cardiovascular effects of fine particulate matter.","authors":"Robyn L Prueitt, Cassandra J Meakin, Nicholas L Drury, Julie E Goodman","doi":"10.1080/08958378.2024.2324033","DOIUrl":"10.1080/08958378.2024.2324033","url":null,"abstract":"<p><strong>Objectives: </strong>Mortality from respiratory and cardiovascular health conditions contributes largely to the total mortality that has been associated with exposure to PM<sub>2.5</sub> in epidemiology studies. A mode of action (MoA) for these underlying morbidities has not been established, but it has been proposed that some effects of PM<sub>2.5</sub> occur through activation of neural reflexes.</p><p><strong>Materials and methods: </strong>We critically reviewed the experimental studies of PM<sub>2.5</sub> (including ambient PM<sub>2.5</sub>, diesel exhaust particles, concentrated ambient particles, diesel exhaust, and cigarette smoke) and neural reflex activation, and applied the principles of the International Programme on Chemical Safety (IPCS) MoA/human relevance framework to assess whether they support a biologically plausible and human-relevant MoA by which PM<sub>2.5</sub> could contribute to cardiovascular and respiratory causes of death. We also considered whether the evidence from these studies supports a non-threshold MoA that operates at low, human-relevant PM<sub>2.5</sub> exposure concentrations.</p><p><strong>Results and discussion: </strong>We found that the proposed MoA of neural reflex activation is biologically plausible for PM<sub>2.5</sub>-induced respiratory effects at high exposure levels used in experimental studies, but further studies are needed to fill important data gaps regarding the relevance of this MoA to humans at lower PM<sub>2.5</sub> exposure levels. A role for the proposed MoA in PM<sub>2.5</sub>-induced cardiovascular effects is plausible for some effects but not others.</p><p><strong>Conclusions: </strong>Further studies are needed to determine whether neural reflex activation is the MoA by which PM<sub>2.5</sub> could cause either respiratory or cardiovascular morbidities in humans, particularly at the ambient concentrations associated with total mortality in epidemiology studies.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elongated particulate burden in an individual who died of mesothelioma and had an occupational history as a talc "mucker". 一名死于间皮瘤的人身上的拉长微粒负荷,其职业史为滑石粉 "碾磨者"。
IF 2.1 4区 医学
Inhalation Toxicology Pub Date : 2024-03-01 Epub Date: 2024-03-19 DOI: 10.1080/08958378.2024.2329935
Ronald F Dodson, Jacqueline Moline, Carlos D Salinas, Lee W Poye
{"title":"Elongated particulate burden in an individual who died of mesothelioma and had an occupational history as a talc \"mucker\".","authors":"Ronald F Dodson, Jacqueline Moline, Carlos D Salinas, Lee W Poye","doi":"10.1080/08958378.2024.2329935","DOIUrl":"10.1080/08958378.2024.2329935","url":null,"abstract":"<p><strong>Introduction: </strong>Tissue from a 77-year-old man diagnosed with mesothelioma was referred with a request for identification of the presence of fibrous structures in tissue samples. The individual's work history including working as a \"mucker\" at a specific \"industrial\" talc mine.</p><p><strong>Methods: </strong>Ferruginous bodies in the tissue digests as well as asbestos fibers were found. A bulk sample of a talc containing product from that mine was also analyzed.</p><p><strong>Discussions/conclusions: </strong>The correlation between the unique asbestos mineral/fibrous content of the talc to which he was exposed and findings of the same type of asbestos found in his lung is discussed. The type of asbestos found (tremolite) is a \"non-commercial\" type of asbestos that has been identified in some talc deposits. Tremolite, like all forms of asbestos is a causative agent for mesothelioma-the disease from which this individual suffered.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140158025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhalation exposure to toxic heavy metals in nail salon technicians and health risk assessment using Monte Carlo simulation 美甲店技师吸入有毒重金属的情况以及利用蒙特卡罗模拟进行的健康风险评估
IF 2.1 4区 医学
Inhalation Toxicology Pub Date : 2024-02-26 DOI: 10.1080/08958378.2024.2315124
Zohreh Mohebian, Fatemeh Paridokht, Sara Karimi Zeverdegani, Farzaneh Mohammadi
{"title":"Inhalation exposure to toxic heavy metals in nail salon technicians and health risk assessment using Monte Carlo simulation","authors":"Zohreh Mohebian, Fatemeh Paridokht, Sara Karimi Zeverdegani, Farzaneh Mohammadi","doi":"10.1080/08958378.2024.2315124","DOIUrl":"https://doi.org/10.1080/08958378.2024.2315124","url":null,"abstract":"Nail salons offer a developing and diverse occupation for many women, especially the new generation. Due to the increasing apprehension surrounding heavy metals in dust caused by filing nails conta...","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139968178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystalline silica-induced pulmonary inflammation and autoimmunity in mature adult NZBW/f1 mice: age-related sensitivity and impact of omega-3 fatty acid intervention. 晶体二氧化硅诱发成熟成年 NZBW/f1 小鼠肺部炎症和自身免疫:与年龄相关的敏感性和欧米伽-3 脂肪酸干预的影响。
IF 2 4区 医学
Inhalation Toxicology Pub Date : 2024-02-01 Epub Date: 2024-03-13 DOI: 10.1080/08958378.2024.2318378
Lauren K Heine, Tasha Scarlett, James G Wagner, Ryan P Lewandowski, Abby D Benninghoff, Ashleigh N Tindle, Anna E Skedel, Jack R Harkema, James J Pestka
{"title":"Crystalline silica-induced pulmonary inflammation and autoimmunity in mature adult NZBW/f1 mice: age-related sensitivity and impact of omega-3 fatty acid intervention.","authors":"Lauren K Heine, Tasha Scarlett, James G Wagner, Ryan P Lewandowski, Abby D Benninghoff, Ashleigh N Tindle, Anna E Skedel, Jack R Harkema, James J Pestka","doi":"10.1080/08958378.2024.2318378","DOIUrl":"10.1080/08958378.2024.2318378","url":null,"abstract":"<p><strong>Objective: </strong>Occupational exposure to respirable crystalline silica (cSiO<sub>2</sub>) has been linked to lupus development. Previous studies in young lupus-prone mice revealed that intranasal cSiO<sub>2</sub> exposure triggered autoimmunity, preventable with docosahexaenoic acid (DHA). This study explores cSiO<sub>2</sub> and DHA effects in mature lupus-prone adult mice, more representative of cSiO<sub>2</sub>-exposed worker age.</p><p><strong>Methods: </strong>Female NZBWF1 mice (14-week old) were fed control (CON) or DHA-supplemented diets. After two weeks, mice were intranasally instilled saline (VEH) or 1 mg cSiO<sub>2</sub> weekly for four weeks. Cohorts were then analyzed 1- and 5-weeks postinstillation for lung inflammation, cell counts, chemokines, histopathology, B- and T-cell infiltration, autoantibodies, and gene signatures, with results correlated to autoimmune glomerulonephritis onset.</p><p><strong>Results: </strong>VEH/CON mice showed no pathology. cSiO<sub>2</sub>/CON mice displayed significant ectopic lymphoid tissue formation in lungs at 1 week, increasing by 5 weeks. cSiO<sub>2</sub>/CON lungs exhibited elevated cellularity, chemokines, CD3<sup>+</sup> T-cells, CD45R <sup>+</sup> B-cells, IgG <sup>+</sup> plasma cells, gene expression, IgG autoantibodies, and glomerular hypertrophy. DHA supplementation mitigated all these effects.</p><p><strong>Discussion: </strong>The mature adult NZBWF1 mouse used here represents a life-stage coincident with immunological tolerance breach and one that more appropriately represents the age (20-30 yr) of cSiO2-exposed workers. cSiO<sub>2</sub>-induced robust pulmonary inflammation, autoantibody responses, and glomerulonephritis in mature adult mice, surpassing effects observed previously in young adults. DHA at a human-equivalent dosage effectively countered cSiO<sub>2</sub>-induced inflammation/autoimmunity in mature mice, mirroring protective effects in young mice.</p><p><strong>Conclusion: </strong>These results highlight life-stage significance in this preclinical lupus model and underscore omega-3 fatty acids' therapeutic potential against toxicant-triggered autoimmune responses.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378324/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid mediators of inhalation exposure-induced pulmonary toxicity and inflammation. 吸入暴露诱发肺毒性和炎症的脂质介质
IF 2.1 4区 医学
Inhalation Toxicology Pub Date : 2024-02-01 Epub Date: 2024-02-29 DOI: 10.1080/08958378.2024.2318389
Arjun Pitchai, Kimberly Buhman, Jonathan H Shannahan
{"title":"Lipid mediators of inhalation exposure-induced pulmonary toxicity and inflammation.","authors":"Arjun Pitchai, Kimberly Buhman, Jonathan H Shannahan","doi":"10.1080/08958378.2024.2318389","DOIUrl":"10.1080/08958378.2024.2318389","url":null,"abstract":"<p><p>Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated <i>via</i> mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139996189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhaled endotoxin induces a systemic neutrophil response without affecting cardiovascular measures in a randomized cross-over exposure study. 在一项随机交叉暴露研究中,吸入内毒素会诱发全身中性粒细胞反应,但不会影响心血管指标。
IF 2.1 4区 医学
Inhalation Toxicology Pub Date : 2024-02-01 Epub Date: 2024-02-18 DOI: 10.1080/08958378.2024.2316241
Stephen A Schworer, Alan L Hinderliter, Melissa C Caughey, Carole Robinette, Kelly D Chason, Haolin Li, Haibo Zhou, Amika K Sood, Allison J Burbank, David B Peden, Michelle L Hernandez
{"title":"Inhaled endotoxin induces a systemic neutrophil response without affecting cardiovascular measures in a randomized cross-over exposure study.","authors":"Stephen A Schworer, Alan L Hinderliter, Melissa C Caughey, Carole Robinette, Kelly D Chason, Haolin Li, Haibo Zhou, Amika K Sood, Allison J Burbank, David B Peden, Michelle L Hernandez","doi":"10.1080/08958378.2024.2316241","DOIUrl":"10.1080/08958378.2024.2316241","url":null,"abstract":"<p><strong>Objective: </strong>The gram-negative bacterial cell wall component endotoxin (lipopolysaccharide, LPS) is a key component of particulate matter (PM). PM exposure is associated with cardiovascular morbidity and mortality. However, the contribution of individual components of PM to acute and chronic cardiovascular measures is not clear. This study examines whether systemic inflammation induced by LPS inhalation causes acute changes in cardiovascular physiology measures.</p><p><strong>Materials and methods: </strong>In this double blinded, placebo-controlled crossover study, fifteen adult volunteers underwent inhalation exposure to 20,000 EU Clinical Center Reference Endotoxin (CCRE). Peripheral blood and induced sputum neutrophils were obtained at baseline and six hours post-exposure. Blood pressure, measures of left ventricular function (ejection fraction (LVEF) and global longitudinal strain (LVGLS)), and indices of endothelial function (flow mediated dilation (FMD) and velocity time integral during hyperemia (VTIhyp)) were measured before and after treatment. Wilcoxon sign-rank tests and linear mixed models were used for statistical analysis.</p><p><strong>Results: </strong>In comparison with normal saline, LPS inhalation resulted in significant increases in peripheral blood and sputum neutrophils but was not associated with significant alterations in blood pressure, LVGLS, LVEF, FMD, or VTIhyp.</p><p><strong>Discussion and conclusions: </strong>In healthy adults, systemic inflammation after LPS inhalation was not associated with acute changes in cardiovascular physiology. Larger studies are needed to investigate the effects of other PM components on inflammation induced cardiovascular dysfunction.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of the effects of active and passive smoking of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response markers. A systematic review. 比较主动和被动吸食烟草卷烟、电子尼古丁递送系统和烟草加热产品对氧化应激和炎症反应标志物的表达和分泌的影响。系统综述。
IF 2 4区 医学
Inhalation Toxicology Pub Date : 2024-02-01 Epub Date: 2024-02-23 DOI: 10.1080/08958378.2024.2319315
Paulina Natalia Kopa-Stojak, Rafal Pawliczak
{"title":"Comparison of the effects of active and passive smoking of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response markers. A systematic review.","authors":"Paulina Natalia Kopa-Stojak, Rafal Pawliczak","doi":"10.1080/08958378.2024.2319315","DOIUrl":"10.1080/08958378.2024.2319315","url":null,"abstract":"<p><strong>Objectives: </strong>This work attempts to summarize current knowledge on the effects of active and passive smoking of cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response mediators, and on their possible impact on chronic obstructive pulmonary disease development.</p><p><strong>Materials and methods: </strong>The literature was searched by the terms: 'smoking', 'active smoking', 'passive smoking', 'main-stream smoke', 'side-stream smoke', 'secondhand smoke', 'cigarette' 'THP', 'tobacco heating product', 'ENDS', 'electronic nicotine delivery system', 'e-cigarette', 'electronic cigarette', oxidative stress', inflammatory response' and 'gene expression'.</p><p><strong>Results: </strong>Cigarette smoking (active and passive) induces oxidative stress and inflammatory response in the airways. We present the effect of active smoking of e-cigarettes (EC) and heat-not-burn (HnB) products on the increased expression and secretion of oxidative stress and inflammatory response markers. However, there is only a limited number of studies on the effect of their second-hand smoking, and those available mainly describe aerosol composition.</p><p><strong>Discussion: </strong>The literature provides data which confirm that active and passive cigarette smoking induces oxidative stress and inflammatory response in the airways and is a key risk factor of COPD development. Currently, there is a limited number of data about ENDS and THP active and passive smoking effects on the health of smokers and never-smokers. It is particularly important to assess the effect of such products during long-term use by never-smokers who choose them as the first type of cigarettes, and for never-smokers who are passively exposed to their aerosol.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of microparticle transport and deposition in nasal cavity of three different age groups. 比较三个不同年龄组鼻腔中微颗粒的运输和沉积情况。
IF 2.1 4区 医学
Inhalation Toxicology Pub Date : 2024-01-01 Epub Date: 2024-02-11 DOI: 10.1080/08958378.2024.2312801
John Valerian Corda, B Satish Shenoy, Kamarul Arifin Ahmad, Leslie Lewis, Prakashini K, Anoop Rao, Mohammad Zuber
{"title":"Comparison of microparticle transport and deposition in nasal cavity of three different age groups.","authors":"John Valerian Corda, B Satish Shenoy, Kamarul Arifin Ahmad, Leslie Lewis, Prakashini K, Anoop Rao, Mohammad Zuber","doi":"10.1080/08958378.2024.2312801","DOIUrl":"10.1080/08958378.2024.2312801","url":null,"abstract":"<p><p><b>Objective:</b> The nasal cavity effectively captures the particles present in inhaled air, thereby preventing harmful and toxic pollutants from reaching the lungs. This filtering ability of the nasal cavity can be effectively utilized for targeted nasal drug delivery applications. This study aims to understand the particle deposition patterns in three age groups: neonate, infant, and adult.<b>Materials and methods:</b> The CT scans are built using MIMICS 21.0, followed by CATIA V6 to generate a patient-specific airway model. Fluid flow is simulated using ANSYS FLUENT 2021 R2. Spherical monodisperse microparticles ranging from 2 to 60 µm and a density of 1100 kg/m<sup>3</sup> are simulated at steady-state and sedentary inspiration conditions.<b>Results:</b> The highest nasal valve depositions for the neonate are 25% for 20 µm, for infants, 10% for 50 µm, 15% for adults, and 15% for 15 µm. At mid nasal region, deposition of 15% for 20 µm is observed for infant and 8% for neonate and adult nasal cavities at a particle size of 10 and 20 µm, respectively. The highest particle deposition at the olfactory region is about 2.7% for the adult nasal cavity for 20 µm, and it is <1% for neonate and infant nasal cavities.<b>Discussion and conclusions:</b> The study of preferred nasal depositions during natural sedentary breathing conditions is utilized to determine the size that allows medication particles to be targeted to specific nose regions.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信