{"title":"A particle of concern: explored and proposed underlying mechanisms of microplastic-induced lung damage and pulmonary fibrosis.","authors":"Rohit Kumar Gautam, Laltanpuia, Nishant Singh, Sapana Kushwaha","doi":"10.1080/08958378.2025.2461048","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In the past decade, microplastics (MPs) have drawn significant attention as widespread environmental contaminants, with research increasingly highlighting their harmful effects on respiratory health in aquatic and terrestrial organisms. Findings revealed microplastics in human lung tissues, raising concerns about their potential role in damaging lung tissue integrity and contributing to pulmonary fibrosis-a chronic inflammatory condition characterized by scarring of lung epithelial tissues due to accumulated extracellular matrix, triggered by factors such as alcohol, pathogens, genetic mutations, and environmental pollutants.</p><p><strong>Objective: </strong>In this review, we explore both well-studied and lesser-studied mechanisms and signaling pathways, aiming to shed light on how microplastics might act as mediators that activate distinct, often overlooked signaling cascades.</p><p><strong>Materials and methods: </strong>This review searched PubMed and Google Scholar using keywords like \"plastic,\" \"microplastic,\" \"lung fibrosis,\" \"pulmonary system,\" \"exposure route,\" and \"signaling pathways,\" combined with \"OR\" and \"AND\" in singular and plural forms.</p><p><strong>Results: </strong>These pathways could not only induce lung damage but also play a significant role in the development of pulmonary fibrosis.</p><p><strong>Discussion and conclusions: </strong>These signaling pathways could also be targeted to reduce microplastic-induced pulmonary fibrosis, opening new avenues for future treatments.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"1-17"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2025.2461048","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In the past decade, microplastics (MPs) have drawn significant attention as widespread environmental contaminants, with research increasingly highlighting their harmful effects on respiratory health in aquatic and terrestrial organisms. Findings revealed microplastics in human lung tissues, raising concerns about their potential role in damaging lung tissue integrity and contributing to pulmonary fibrosis-a chronic inflammatory condition characterized by scarring of lung epithelial tissues due to accumulated extracellular matrix, triggered by factors such as alcohol, pathogens, genetic mutations, and environmental pollutants.
Objective: In this review, we explore both well-studied and lesser-studied mechanisms and signaling pathways, aiming to shed light on how microplastics might act as mediators that activate distinct, often overlooked signaling cascades.
Materials and methods: This review searched PubMed and Google Scholar using keywords like "plastic," "microplastic," "lung fibrosis," "pulmonary system," "exposure route," and "signaling pathways," combined with "OR" and "AND" in singular and plural forms.
Results: These pathways could not only induce lung damage but also play a significant role in the development of pulmonary fibrosis.
Discussion and conclusions: These signaling pathways could also be targeted to reduce microplastic-induced pulmonary fibrosis, opening new avenues for future treatments.
期刊介绍:
Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals.
The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.