{"title":"Changes in Indoor Air Quality in Public Facilities before and after the Enactment of Taiwan’s Indoor Air Quality Management Act","authors":"Hsiu-Ling Chen, Pei-Shan Chih, Kai-Jen Chuang, Hsiao-Chi Chuang, Li-Te Chang","doi":"10.1155/2024/5898087","DOIUrl":"https://doi.org/10.1155/2024/5898087","url":null,"abstract":"<p>South Korea was the first to administer the Indoor Air Quality Control Act in 1996, followed by Taiwan’s implementation in 2012. This study investigated indoor air quality (IAQ) in public facilities before and after the enactment of Taiwan’s Indoor Air Quality Management (IAQM) Act in 2012 to assess the effectiveness of the Act. The study also calculates health risks for employers, and consumers/visitors separately. The mean concentration of carbon dioxide (CO<sub>2</sub>) after the IAQM Act’s enactment was higher than before, except for government offices. The lowest attainment rates for CO<sub>2</sub>, below 80%, were 73% in hospitals and 78% in libraries. As for formaldehyde, average concentrations were higher after the IAQM Act’s implementation, except for the exhibition room and library. Notably, improvements in particulate matter with a diameter less than 2.5 <i>μ</i>m (PM<sub>2.5</sub>) levels were evident in hospitals and libraries compared to other environments (attainment rates increased from 85% to 100% and 89% to 94%, respectively). However, in schools, preschools, and public transport spaces, unattainment rates worsened. Regarding cancer risk from formaldehyde exposure in the public, the 95% of upper risk limits ranged from 3.44 × 10<sup>−5</sup> in the public transport system to 8.80 × 10<sup>−4</sup> in preschools. Our findings highlight the necessity of integrating more measurement data after IAQM Act implementation and formulating management strategies based on risk assessments for future investigations.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indoor airPub Date : 2024-04-24DOI: 10.1155/2024/5055615
Hyunjun Yun, Ji Hoon Seo, Jinho Yang
{"title":"Development of Particle Filters for Portable Air Purifiers by Combining Melt-Blown and Polytetrafluoroethylene to Improve Durability and Performance","authors":"Hyunjun Yun, Ji Hoon Seo, Jinho Yang","doi":"10.1155/2024/5055615","DOIUrl":"10.1155/2024/5055615","url":null,"abstract":"<p>Improving indoor air quality through the use of air purifiers has become a major focus, with emphasis on developing filters with high efficiency, high holding capacity, and low-pressure drop to improve the clean air delivery rate (CADR) for air purifiers. However, although most studies focused on developing media and evaluating their performance, few studies have reached the employment for a pleated filter. In this study, we newly synthesized flat media and pleated filters by combining polytetrafluoroethylene membrane (PT) and melt-blown (MB) materials (PM) and compared its initial performance to that of other air purifier filters (MB, glass fiber, and PT). Additionally, we analyzed how the performance changed after the particles were loaded. The initial efficiency of the PM filter showed a higher quality factor (QF) than the other filters. Furthermore, when more particles were loaded, the penetration of the PM did not change. These results demonstrate the potential of the PM. However, the CADR and submicron-sized (0.02–0.113 <i>μ</i>m) CADR (sCADR) were highest for the MB filter due to the initial pressure drop. Therefore, additional improvements are required to apply the PM in air purifiers. However, the results suggest that the PM can be a new alternative for air purifier filters used in medical centers or facilities with vulnerable populations where a high-efficiency particle air (HEPA) filter must be used.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140662569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indoor airPub Date : 2024-04-23DOI: 10.1155/2024/6192008
Beibei Wang, He Huang, Ning Qin, Wenjing Zhao, Qin Wang, Suzhen Cao, Xing Chen, Xiangyu Xu, Xiaoli Duan
{"title":"Effect of NPAH Exposure on Lung Function of Children in Indoor Coal Combustion Environment","authors":"Beibei Wang, He Huang, Ning Qin, Wenjing Zhao, Qin Wang, Suzhen Cao, Xing Chen, Xiangyu Xu, Xiaoli Duan","doi":"10.1155/2024/6192008","DOIUrl":"10.1155/2024/6192008","url":null,"abstract":"<p>Nitropolycyclic aromatic hydrocarbon (NPAH) emissions from the combustion of household solid fuel may cause great harm to public health. Children are one of the most susceptible population groups at risk of indoor air pollutants due to their immature respiratory and immune systems. In this study, a primary school using household coal combustion for heating in winter was selected and forty participants were randomly recruited among schoolchildren. Fine particulate matter samples were collected by both individual portable samplers and fixed middle-flow samplers during the heating and nonheating seasons. The NPAH concentrations in PM<sub>2.5</sub> samples were analyzed by a gas chromatograph coupled to a mass spectrometer. Potential sources of NPAHs were identified by NPAH ratios as well as principal component analysis. Lung function of children was tested by an electronic spirometer. The relationship between NPAH exposure level and children’s lung function was studied. Finally, the cancer risk caused by NPAH inhalation was assessed. The results showed significantly higher individual NPAH exposure level in heating season (0.901 ± 0.396 ng·m<sup>-3</sup>) than that in nonheating season (0.094 ± 0.107 ng·m<sup>-3</sup>). Coal/biomass combustion and secondary formation were the potential NPAH sources in heating season. Significantly lower lung function of children was also found in heating season compared with that in nonheating season. As a result of the Monte Carlo simulation, the averaged incremental lifetime cancer risk (ILCR) values from the inhalation of NPAHs in the heating and nonheating seasons were 3.50 × 10<sup>−8</sup> and 2.13 × 10<sup>−8</sup>, respectively. Our research revealed the association between NPAH exposure and children’s lung function and confirmed the adverse effect of indoor coal combustion. The results also indicated that further control strategies on indoor coal combustion are needed to reduce the risk of NPAH exposure and protect children’s health.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140668546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indoor airPub Date : 2024-04-17DOI: 10.1155/2024/8834373
Yi-An Lin, Ying-Chieh Chan, Wan-Chen Lee
{"title":"Effects of Window Position and Exhaust Flow Rate on Residential Kitchen Hood Performance: A Validated Numerical Approach","authors":"Yi-An Lin, Ying-Chieh Chan, Wan-Chen Lee","doi":"10.1155/2024/8834373","DOIUrl":"10.1155/2024/8834373","url":null,"abstract":"<p>Previous studies showed that opening windows could help with kitchen ventilation in pollutant removal. However, no studies have systematically examined the impacts of window positions on kitchen hood performance, and there is insufficient information on indoor airflow characteristics and pollutant distribution from makeup air through open windows. Therefore, the objective of this study was to use a validated computational fluid dynamics approach with CO<sub>2</sub> as an indoor air quality indicator (a surrogate for cooking emissions) to understand the impacts of exhaust flow rate and the window opening position on the flow characteristics, concentration distribution, and capture efficiency (CE) of the hood. We conducted four-point validation tests of the numerical models based on CO<sub>2</sub> concentration and temperature measurements under steady-state conditions. The validated models were subsequently used in simulations to understand the effects of six different window opening positions and the two exhaust flow rates on exposure. We found that the CO<sub>2</sub> concentration could be better reduced by having windows open at the higher location. Generally, the front windows were more effective with CE > 80<i>%</i>, followed by the back and the side windows, respectively. We also found that as the exhaust flow rate increased from 6.72 to 12.16 m<sup>3</sup>/min, CE reached >75% for all window positions, where the most significant increase was 1.58 times for the lower side window. To sum up, changing the relative position of the window and the exhaust hood could help disperse the incoming airflow from the window, improve the kitchen’s overall ventilation, and reduce pollutant concentration.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indoor airPub Date : 2024-04-16DOI: 10.1155/2024/1537588
Mariem Zouari, Silvo Hribernik, Matthew Schwarzkopf
{"title":"Indoor Air Remediation Using Biochar from Bark: Impact of Particle Size and Pollutant Concentration","authors":"Mariem Zouari, Silvo Hribernik, Matthew Schwarzkopf","doi":"10.1155/2024/1537588","DOIUrl":"10.1155/2024/1537588","url":null,"abstract":"<p>The growing emphasis on indoor air quality and public health is fuelling the need for efficient yet affordable air purification techniques. In this study, the influence of biochar particle size on its adsorption efficiency toward airborne pollutants was examined. Bark-derived biochar particles were treated by grinding or ball milling, and then, seven samples with different particle size groups were separated. Biochar particles were characterized by particle size, proximate, SEM, XRD, and physisorption analyses. For adsorption efficiency, two different pollutants were tested at variable initial concentrations. The physical composition and XRD patterns of the biochar with different particle sizes were comparable. The ball-milled sample was an exception in that it had higher ash content and additional XRD peaks signifying contamination of the sample. The porosity of biochar was greater in smaller particles. Ball milling increased the specific surface area and total pore volume by 102% and 48%, respectively. Biochar with finer particle size exhibited the highest adsorption potential towards formaldehyde and methanol among other samples. It should be emphasized that simple mechanical grinding is preferred for reducing biochar size to avoid the risk of eventual contamination, greater energy consumption, and slower processing related to ball milling. When a low concentration of pollutant was tested (1 ppm formaldehyde), the effect of particle size on the adsorption efficiency was more noticeable. However, the effect of particle size was less dominant when higher concentrations of pollutants were tested. Smaller biochar particles (<100 <i>μ</i>m) are more favourable for indoor air remediation given their superior adsorption efficiency of volatile organic compounds occurring at low concentrations in the buildings.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140696912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection and High-Throughput Microbial Analysis of Particulate Matter in Houses and Downwind Areas of Duck Farms","authors":"Zhengxiu Qu, Hairong Wang, Ning Li, Zhiyun Guo, Jing Li, Xiaoyang Lv, Yinling Cui, Tongjie Chai","doi":"10.1155/2024/7774679","DOIUrl":"10.1155/2024/7774679","url":null,"abstract":"<p>Particulate matter (PM) and the microorganisms of duck houses may have negative impacts on animal and human health. During 2021-2022, PM2.5 and PM10 inside and outside the duck house were sampled with a built-in air sampler in Tai’an City, Shandong Province, and the diversity and abundance of microorganisms within the PM were analyzed by macrogenomic and absolute sequence analysis. The results showed that PM2.5 and PM10 concentrations in the house and at downwind points exceeded the short-term (24 h) guideline of the global air quality guidelines (AQG). Macrogenome sequencing showed that the microbial composition of the PM2.5 samples was dominated by bacteria (exceed 85%); a total of 1316 bacterial genera and 110 fungal genera were identified in PM2.5 samples from duck house 1 in winter, which were much higher than the results of amplicon sequencing method reported before, and relatively high levels of the pathogenic bacteria (Coccidioides immitis, etc.) and the conditionally pathogenic bacterium (Rothia nasimurium) were identified at the species level. Absolute quantitative sequencing detected conditionally pathogenic bacteria and allergens at high levels in PM10 samples: Corynebacterium (5.6 × 10<sup>7</sup> copies/g), Aerococcus (9.9 × 10<sup>6</sup> copies/g), Alternaria (3.3 × 10<sup>6</sup> copies/g), and Aspergillus (8.3 × 10<sup>5</sup> copies/g). Moreover, Corynebacterium was the highest content of PM10 in summer and PM2.5 samples in winter, and its pathogenicity and potential threat should be noted. The diversity and relative abundance of microorganisms were similar in the duck house and at the downwind point. The results showed that the microorganisms in the house environment have a greater influence on the air environment around the downwind point and may pose a public health risk to the staff and the surrounding area.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140711414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indoor airPub Date : 2024-04-08DOI: 10.1155/2024/5584960
Zhipeng Deng, Bing Dong, Xin Guo, Jianshun Zhang
{"title":"Impact of Indoor Air Quality and Multi-domain Factors on Human Productivity and Physiological Responses: A Comprehensive Review","authors":"Zhipeng Deng, Bing Dong, Xin Guo, Jianshun Zhang","doi":"10.1155/2024/5584960","DOIUrl":"10.1155/2024/5584960","url":null,"abstract":"<p>Indoor environmental quality (IEQ) significantly impacts human health, well-being, and productivity. However, a comprehensive and in-depth review of the combined effects of IAQ and other multi-domain factors on human productivity is lacking. There has not been any prior review that encapsulates the impact of multi-domain factors on productivity and physiological responses of occupants. To address this gap, this review paper investigates and highlights the impact of IAQ and multi-domain factors (thermal, visual, and acoustic) on human productivity and occupant well-being in the built environment. The review explores various research methods, including evaluation of human productivity and creativity, data collection, and physiological signal analysis. We also examined the interactions between IAQ and multi-domain factors, as well as strategies for optimizing productivity through integrated building design and smart systems. The key findings from this review reveal that IAQ significantly impacts human productivity and occupant well-being, with interactions between IAQ and other IEQ factors further impacting these effects. Despite advances in the field, there are several limitations and gaps in the current research methods and study designs, including small sample sizes, limited and insufficient experimental design and control, reliance on laboratory or simulated environments, lack of follow-up and long-term data, and lack of robust performance metrics. The review proposes future research directions, including specific applications, and follow-up work to address these limitations and further advance the understanding of IAQ and multi-domain factors in the built environment. The implications of this review for policy and practice include the need for holistic and integrated approaches to IAQ and IEQ management, with a focus on creating healthy and productive indoor environments. This review emphasizes the importance of considering the complex interplay between IAQ and multi-domain factors, as well as the potentials of adopting smart control systems and sustainable design strategies to optimize productivity and occupant well-being in the built environment. By addressing these critical issues, we can enhance the overall quality of life for building occupants and contribute to a more sustainable future.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140730539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indoor airPub Date : 2024-03-27DOI: 10.1155/2024/5578611
Sara Thuresson, Carl-Johan Fraenkel, Sviataslau Sasinovich, Patrik Medstrand, Malin Alsved, Jakob Löndahl
{"title":"One Year Weekly Size-Resolved Air Sampling of SARS-CoV-2 in Hospital Corridors and Relations to the Indoor Environment","authors":"Sara Thuresson, Carl-Johan Fraenkel, Sviataslau Sasinovich, Patrik Medstrand, Malin Alsved, Jakob Löndahl","doi":"10.1155/2024/5578611","DOIUrl":"10.1155/2024/5578611","url":null,"abstract":"<p><i>Background</i>. Airborne SARS-CoV-2 plays a prominent role in COVID-19 transmission. Numerous studies have sampled air from patient rooms, but airborne spread to other hospital areas such as corridors is less investigated. <i>Methods</i>. Size-fractionated aerosol particles were collected weekly, with 12 hours of sampling time daily, in corridors at two infectious disease wards in southern Sweden between March 2020 and May 2021. Samples were analysed with real-time reverse transcription polymerase chain reaction (RT-qPCR) for detection of SARS-CoV-2 RNA. Indoor temperature, relative humidity, and CO<sub>2</sub> concentration were monitored during the sampling period. <i>Results</i>. 20 of the 784 collected samples contained SARS-CoV-2 RNA, although in low concentrations. Positive air samples were found in sizes between 0.14 and 8.1 <i>μ</i>m, but none >8.1 <i>μ</i>m. 45% were found in submicron particles. No clear seasonal pattern was observed among the positive samples. There was no significant difference in the positivity rate of the samples between the two wards. <i>Conclusions</i>. SARS-CoV-2 was only detected in 2.6% of the aerosol samples, which indicates that the spread of airborne virus from patient rooms to the corridor was limited.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140377374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indoor airPub Date : 2024-03-26DOI: 10.1155/2024/6642205
K. A. Krishnaprasad, N. Zgheib, K. Choudhary, M. Y. Ha, C. Y. Choi, K. S. Bang, S. Jang, S. Balachandar
{"title":"Existence of a Nonzero Worst-Case ACH for Short-Term Exposure in Ventilated Indoor Spaces","authors":"K. A. Krishnaprasad, N. Zgheib, K. Choudhary, M. Y. Ha, C. Y. Choi, K. S. Bang, S. Jang, S. Balachandar","doi":"10.1155/2024/6642205","DOIUrl":"https://doi.org/10.1155/2024/6642205","url":null,"abstract":"<p>A well-ventilated room is essential to reduce the risk of airborne transmission. As such, the scientific community sets minimum limits on ventilation with the idea that increased ventilation reduces pathogen concentration and thus reduces the risk of transmission. In contrast, the upper limit on ventilation is usually determined by human comfort and the need to reduce energy consumption. While average pathogen concentration decreases with increased ventilation, local concentration depends on multiple factors and may not follow the same trend, especially within short exposure times over large separation distances. Here, we show through experiments and high-fidelity simulations the existence of a worst-case ventilation where local pathogen concentration increases near the receiving host. This occurs during the type of meetings that were recommended during the pandemic (and in some cases solely authorized) with reduced occupancy adhering to social distancing and short exposure times below 20 minutes. We maintain that for cases of high occupancy and long exposure time, increased ventilation remains necessary.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pain in Solid and Clean Fuel Using Households","authors":"Yi Zhu, Lijin Chen, Honghong Feng, Esthefany Xu Zheng, Yixiang Huang","doi":"10.1155/2024/6611488","DOIUrl":"10.1155/2024/6611488","url":null,"abstract":"<p>Household air pollution from solid cooking fuel use influences multiple health outcomes, but its association with body pain remains poorly understood. This was a longitudinal study of 8880 adults who participated in the China Health and Retirement Longitudinal Study (CHARLS) from 2011 to 2018. Household cooking fuels were extracted from the baseline household questionnaire. Transitions in cooking fuels from 2011 to 2018 were also identified. Body pain status was reported in the three waves of surveys conducted in 2011, 2015, and 2018. The associations between cooking fuel type, fuel transition, and pain site number were examined using generalized estimating equations. Among the 8880 participants, 41.4% (<i>n</i> = 3680) primarily used clean fuels for cooking, and 58.6% (<i>n</i> = 5200) used solid ones at baseline. Cooking with solid fuels was associated with more pain sites (incidence rate ratio (IRR): 1.14; 95% confidence interval (CI): 1.08 to 1.21), but a slower rate of pain sites increases from 2011 to 2018 (IRR = 0.78; 95% CI: 0.71 to 0.86, for 2018 × solid fuels). Compared with those who persistently used clean fuels for cooking, the number of pain sites increased by 10% in participants who transiting from using solid to clean fuels (IRR = 1.10; 95% CI: 1.04 to 1.18), by 21% in those transiting from cooking with clean to solid fuels (IRR = 1.21: 95% CI: 1.08 to 1.35) and by 25% among those persistent using solid fuels for cooking (IRR = 1.25; 95% CI: 1.18 to 1.34). Our findings provided new evidence linking using solid fuels for cooking with more pain sites, but a slower rate of pain sites increases. Public health efforts should focus on fuel transition and take measures to help clean fuels spread.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140383903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}