洁净室计算流体动力学研究超越经典室内空气模拟的考虑:系统综述

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Indoor air Pub Date : 2025-06-12 DOI:10.1155/ina/4302921
Stephan Puntigam, Stefan Radl, Peter Karlinger
{"title":"洁净室计算流体动力学研究超越经典室内空气模拟的考虑:系统综述","authors":"Stephan Puntigam,&nbsp;Stefan Radl,&nbsp;Peter Karlinger","doi":"10.1155/ina/4302921","DOIUrl":null,"url":null,"abstract":"<p>We provide a systematic review of the literature on computational fluid dynamics (CFD) in the cleanroom sector. The objective is to provide simulation engineers with an overview of studies in the field of cleanroom simulation, as well as to identify the most commonly used simulation parameters. Our findings indicate a persistent preference for the <i>k</i> − <i>ε</i> model for turbulent flow situations, although recent studies suggest a shift toward more sophisticated models, such as the RNG <i>k</i> − <i>ε</i> and SST <i>k</i> − <i>ω</i>. This reflects advancements in the available computational power made in the past years. Our analysis of particle tracking models indicates a clear preference for the Euler–Lagrange method over the Euler–Euler method. Moreover, the analysis of inlet models used indicates that geometrically resolved diffusers are preferred over simplified models. As every simulation study requires proper validation, full-scale experiments are clearly preferred in the reviewed studies. A best practice guide is distilled out of previous studies to provide a meaningful starting point for future CFD studies in the cleanroom sector.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ina/4302921","citationCount":"0","resultStr":"{\"title\":\"Considerations for Computational Fluid Dynamics Studies of Cleanrooms Exceeding Classical Indoor Air Simulations: A Systematic Review\",\"authors\":\"Stephan Puntigam,&nbsp;Stefan Radl,&nbsp;Peter Karlinger\",\"doi\":\"10.1155/ina/4302921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide a systematic review of the literature on computational fluid dynamics (CFD) in the cleanroom sector. The objective is to provide simulation engineers with an overview of studies in the field of cleanroom simulation, as well as to identify the most commonly used simulation parameters. Our findings indicate a persistent preference for the <i>k</i> − <i>ε</i> model for turbulent flow situations, although recent studies suggest a shift toward more sophisticated models, such as the RNG <i>k</i> − <i>ε</i> and SST <i>k</i> − <i>ω</i>. This reflects advancements in the available computational power made in the past years. Our analysis of particle tracking models indicates a clear preference for the Euler–Lagrange method over the Euler–Euler method. Moreover, the analysis of inlet models used indicates that geometrically resolved diffusers are preferred over simplified models. As every simulation study requires proper validation, full-scale experiments are clearly preferred in the reviewed studies. A best practice guide is distilled out of previous studies to provide a meaningful starting point for future CFD studies in the cleanroom sector.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ina/4302921\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/ina/4302921\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ina/4302921","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个系统的文献回顾计算流体动力学(CFD)在洁净室部门。目的是为仿真工程师提供洁净室仿真领域的研究概况,以及确定最常用的仿真参数。我们的研究结果表明,对于湍流情况,人们一直倾向于使用k−ε模型,尽管最近的研究表明,人们正在转向更复杂的模型,如RNG k−ε和SST k−ω。这反映了过去几年可用计算能力的进步。我们对粒子跟踪模型的分析表明,欧拉-拉格朗日方法明显优于欧拉-欧拉方法。此外,对进口模型的分析表明,几何分解扩散器优于简化模型。由于每一个模拟研究都需要适当的验证,在回顾的研究中,全尺寸实验显然是首选。最佳实践指南是从以前的研究中提炼出来的,为未来洁净室领域的CFD研究提供了一个有意义的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Considerations for Computational Fluid Dynamics Studies of Cleanrooms Exceeding Classical Indoor Air Simulations: A Systematic Review

We provide a systematic review of the literature on computational fluid dynamics (CFD) in the cleanroom sector. The objective is to provide simulation engineers with an overview of studies in the field of cleanroom simulation, as well as to identify the most commonly used simulation parameters. Our findings indicate a persistent preference for the kε model for turbulent flow situations, although recent studies suggest a shift toward more sophisticated models, such as the RNG kε and SST kω. This reflects advancements in the available computational power made in the past years. Our analysis of particle tracking models indicates a clear preference for the Euler–Lagrange method over the Euler–Euler method. Moreover, the analysis of inlet models used indicates that geometrically resolved diffusers are preferred over simplified models. As every simulation study requires proper validation, full-scale experiments are clearly preferred in the reviewed studies. A best practice guide is distilled out of previous studies to provide a meaningful starting point for future CFD studies in the cleanroom sector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信