IEEE Transactions on Nuclear Science最新文献

筛选
英文 中文
Random Telegraph Noise and Radiation Response of 80 nm Vertical Charge-Trapping NAND Flash Memory Devices With SiON Tunneling Oxide 采用 SiON 隧道氧化物的 80 纳米垂直电荷捕获 NAND 闪存设备的随机电报噪声和辐射响应
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-19 DOI: 10.1109/TNS.2024.3431436
Isabella R. Wynocker;En Xia Zhang;Robert A. Reed;Ronald D. Schrimpf;Antonio Arreghini;João P. Bastos;Geert Van den Bosch;Dimitri Linten;Daniel M. Fleetwood
{"title":"Random Telegraph Noise and Radiation Response of 80 nm Vertical Charge-Trapping NAND Flash Memory Devices With SiON Tunneling Oxide","authors":"Isabella R. Wynocker;En Xia Zhang;Robert A. Reed;Ronald D. Schrimpf;Antonio Arreghini;João P. Bastos;Geert Van den Bosch;Dimitri Linten;Daniel M. Fleetwood","doi":"10.1109/TNS.2024.3431436","DOIUrl":"10.1109/TNS.2024.3431436","url":null,"abstract":"Random telegraph noise (RTN) measurements are performed on as-processed, programmed, erased, and irradiated 80 nm vertical charge-trapping nand memory transistors. Variations in current with time of up to ±20% are observed during the RTN testing interval. The RTN of these devices is relatively unaffected by irradiation of devices to 500 krad(SiO2). Root-mean-square (rms) magnitudes of measured RTN exceed predictions of number-fluctuation models (NFMs) by up to six-times. This result demonstrates that fluctuations in carrier scattering rates caused by motion and/or reconfiguration of traps at grain boundaries likely lead to a significant fraction of the low-frequency noise and/or RTN in poly-crystalline Si channel, charge-trapping memory devices. The magnitudes of these fluctuations may present significant challenges to the resolution of highly scaled 3-D memory devices.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10604903","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proton and Electron Pulse Shape Discrimination for In Situ Radiation Belt Monitoring 用于原位辐射带监测的质子和电子脉冲形状识别技术
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-19 DOI: 10.1109/TNS.2024.3426972
Maxime Pinson;Pablo Caron;Quentin Gibaru
{"title":"Proton and Electron Pulse Shape Discrimination for In Situ Radiation Belt Monitoring","authors":"Maxime Pinson;Pablo Caron;Quentin Gibaru","doi":"10.1109/TNS.2024.3426972","DOIUrl":"10.1109/TNS.2024.3426972","url":null,"abstract":"The goal of this article is to develop the necessary numerical models to study the differences of the induced current pulse shapes of protons and electrons in solid-state detectors (SSDs), all while validating these models with an experimental test bench. The shape of the captured current pulse created by the passage of the particle in the SSD is indicative of the nature of the particle, which we aim to predict using the information in the pulse shape. The performances and limits of such a system are explored here in the scope of proton/electron discrimination in Earth’s radiation belts. This provides a meaningful asset to the methods used in radiation monitors these days, which mostly rely on total energy deposited.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TID Level of Failure Dependence From Operating Configuration of the System—Space Class DC/DC Converter Case Study TID 故障级别与系统运行配置的关系--空间级 DC/DC 转换器案例研究
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-19 DOI: 10.1109/TNS.2024.3431281
Tomasz Rajkowski;Jérôme Boch;Frédéric Saigné;Pierre-Xiao Wang;Sławomir Wronka;Michał Matusiak;Adam Wasilewski
{"title":"TID Level of Failure Dependence From Operating Configuration of the System—Space Class DC/DC Converter Case Study","authors":"Tomasz Rajkowski;Jérôme Boch;Frédéric Saigné;Pierre-Xiao Wang;Sławomir Wronka;Michał Matusiak;Adam Wasilewski","doi":"10.1109/TNS.2024.3431281","DOIUrl":"10.1109/TNS.2024.3431281","url":null,"abstract":"We present and analyze system-level total ionizing dose (TID) tests of the simple analog system, point-of-load (PoL) dc/dc converter from 3D Plus, which was already qualified up to 50 krad(SiO2) based on component-level tests. TID response varied with the radiation facility for several parts; however, extensive testing with one part has shown significant differences in the TID level of functional failure observed for different operation modes (configurations): depending on the operating configuration of the device, the observed TID level of failure varies from about 60 krad(SiO2) to more than 400 krad(SiO2). These differences are depicted with the use of the safe operating area (SOA) plot for the system, which incorporates main system functional parameters. We also explore the potential utilization of the SOA concept in defining the system’s TID performance, employing a range of TID thresholds rather than relying on a singular value.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proton, Electron, and Photon Flux Measurement and Simulation During Stratospheric Balloon Flights 平流层气球飞行期间质子、电子和光子通量测量与模拟
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-19 DOI: 10.1109/TNS.2024.3430044
Hugo Cintas;Frédéric Wrobel;Frédéric Saigné;Marine Ruffenach;Damien Herrera;Françoise Bezerra;Julien Mekki;Athina Varotsou
{"title":"Proton, Electron, and Photon Flux Measurement and Simulation During Stratospheric Balloon Flights","authors":"Hugo Cintas;Frédéric Wrobel;Frédéric Saigné;Marine Ruffenach;Damien Herrera;Françoise Bezerra;Julien Mekki;Athina Varotsou","doi":"10.1109/TNS.2024.3430044","DOIUrl":"10.1109/TNS.2024.3430044","url":null,"abstract":"This article compares three models of the atmospheric radiative environment: 1) model of atmospheric ionizing radiative effects (MAIREs); 2) Excel-based Program for calculating Atmospheric Cosmic-ray Spectrum (EXPACS); and 3) radiation atmospheric model for single-event effect simulation (RAMSEES) to experimental fluxes measured at different altitudes. The PIX Centre National d’Etudes Spatiales (CNES) instrument recorded the fluxes during five stratospheric flights. There is no standard way to model the atmospheric radiative environment today. Each model uses its own Monte Carlo toolkit, modeling the atmosphere and primary particles. The RAMSEES was created by Geant4 simulation of the Extensive Air Shower (EAS) phenomenon generated by highly energetic Galactic Cosmic Rays (GCRs) in 100 km of atmosphere. By using PIX fluxes, this article aims to benchmark the models with experimental data at multiple altitudes. Three integral fluxes were used in this article at a comparison point: 1) photons >0.823 MeV; 2) electrons >10.27 MeV; and 3) protons >80 MeV. MAIRE shows good agreement with all the experimental fluxes from 5 to 40 km. MAIRE predictions show remarkable agreement with the PIX photon fluxes. EXPACS predictions are in a magnitude order of PIX measurements but tend to underestimate the fluxes. Finally, RAMSEES predictions agree with PIX fluxes for protons, electrons, and photons at altitudes of 5–32.5 km. Moreover, RAMSEES shows significant agreement with PIX proton fluxes.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detector Conference 电气和电子工程师协会核科学研讨会、医学影像会议和室温半导体探测器会议
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-18 DOI: 10.1109/TNS.2024.3426184
{"title":"IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detector Conference","authors":"","doi":"10.1109/TNS.2024.3426184","DOIUrl":"https://doi.org/10.1109/TNS.2024.3426184","url":null,"abstract":"","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10604691","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge Sharing Assessment and Active Collimation in Monolithic Arrays of Silicon Drift Detectors 硅漂移探测器单片阵列中的电荷共享评估和主动准直
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-18 DOI: 10.1109/TNS.2024.3429622
Beatrice Pedretti;Giacomo Borghi;Giacomo Ticchi;Davide Di Vita;Marco Carminati;Carlo Fiorini
{"title":"Charge Sharing Assessment and Active Collimation in Monolithic Arrays of Silicon Drift Detectors","authors":"Beatrice Pedretti;Giacomo Borghi;Giacomo Ticchi;Davide Di Vita;Marco Carminati;Carlo Fiorini","doi":"10.1109/TNS.2024.3429622","DOIUrl":"10.1109/TNS.2024.3429622","url":null,"abstract":"Charge sharing (CS) between pixels is a significant concern in X-ray spectroscopy detectors based on monolithic arrays of silicon drift detectors (SDDs) when a photon is absorbed near a pixel edge. Traditional mechanical collimation mitigates CS but decreases the active area of the detector. This is particularly true for small-pixel detectors, where the mechanical collimator shields a significant portion of the active area and, moreover, becomes quite complex to be manufactured for small apertures. In this work, we carry out a study of CS in SDDs and introduce active collimation as an alternative to mechanical collimation, leveraging key parameters of signals at the output of the charge-sensitive amplifier (CSA), to identify CS events occurring within a defined coincidence window (CW) in neighboring pixels. To validate the technique, we first conducted a quantitative assessment of the impact of CS on a 16-element monolithic SDD module with 2-mm-side square pixels using a focused pulsed laser. We then tested an active collimation algorithm on this detector configuration during a spectroscopic measurement with an uncollimated 55Fe source, demonstrating its capability in recovering CS events and reconstructing them as Mn-K\u0000<inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>\u0000 peak events. This active collimation approach, in contrast to mechanical collimation, not only enhances the effective active area while achieving a substantial reduction in the background continuum of the spectrum, but also recovers information inevitably lost in uncollimated detectors due to intrinsic CS effects.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10604722","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Nuclear Science publication information 电气和电子工程师学会《核科学学报》出版物信息
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-18 DOI: 10.1109/TNS.2024.3426195
{"title":"IEEE Transactions on Nuclear Science publication information","authors":"","doi":"10.1109/TNS.2024.3426195","DOIUrl":"https://doi.org/10.1109/TNS.2024.3426195","url":null,"abstract":"","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10604659","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research with the World! TechRxiv:与世界分享您的预印本研究成果!
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-18 DOI: 10.1109/TNS.2024.3427510
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TNS.2024.3427510","DOIUrl":"https://doi.org/10.1109/TNS.2024.3427510","url":null,"abstract":"","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10604672","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Member Get-A-Member (MGM) Program 会员注册(MGM)计划
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-18 DOI: 10.1109/TNS.2024.3427508
{"title":"Member Get-A-Member (MGM) Program","authors":"","doi":"10.1109/TNS.2024.3427508","DOIUrl":"https://doi.org/10.1109/TNS.2024.3427508","url":null,"abstract":"","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10604718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Nuclear Science information for authors 电气和电子工程师学会《核科学学报》为作者提供的信息
IF 1.9 3区 工程技术
IEEE Transactions on Nuclear Science Pub Date : 2024-07-18 DOI: 10.1109/TNS.2024.3426196
{"title":"IEEE Transactions on Nuclear Science information for authors","authors":"","doi":"10.1109/TNS.2024.3426196","DOIUrl":"https://doi.org/10.1109/TNS.2024.3426196","url":null,"abstract":"","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10604715","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信