{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TMAG.2025.3564111","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3564111","url":null,"abstract":"","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 5","pages":"1-1"},"PeriodicalIF":2.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of Out-of-Plane Magnetic Field: Realized by TMR-Superconducting Composite Structure","authors":"Yue Wu;Liye Xiao;Siyuan Han;Liwei Jing;Tianchang Liu;Jiamin Chen","doi":"10.1109/TMAG.2025.3563491","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3563491","url":null,"abstract":"Tunneling Magnetoresistance (TMR) magnetic sensors offer advantages such as high sensitivity, low power consumption, and compact size, making them promising for applications in fields like biomedical and geological exploration. Currently, most TMR magnetic sensors can only detect magnetic flux density in the horizontal in-plane direction due to the in-plane magnetic anisotropy (IMA) of tunnel junctions. This article proposes a novel TMR-superconducting composite structure that enables TMR to detect out-of-plane magnetic flux density, and its sensitivity can be adjusted by modifying the shape and size of the superconducting layer. This study provides significant theoretical and experimental support for the design of high sensitivity magnetoresistance (MR) sensors and MR sensor arrays.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 7","pages":"1-5"},"PeriodicalIF":2.1,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144536516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Performance Analysis of Hybrid VCMA + STT-MTJ/CMOS Circuits for CIM Architecture","authors":"Prashanth Barla","doi":"10.1109/TMAG.2025.3563418","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3563418","url":null,"abstract":"The emerging computation-in-memory (CIM) architecture effectively overcomes the limitations, such as memory wall and rise in the standby power dissipation associated with the conventional von-Neumann structure. In this article, we developed hybrid voltage-controlled magnetic anisotropy-assisted spin-transfer torque magnetic tunnel junction (VCMA + STT MTJ) circuits for the CIM architecture. Initially, we have proposed a novel VCMA + STT MTJ write circuit that is 63.35% and 94.86% more energy efficient with 50.87% and 59.42% lower transistors compared to spin-Hall effect-assisted (SHE) MTJ STT and STT MTJs, respectively. Subsequently, development of VCMA + STT non-volatile full adder (NVFA) with the novel write circuit unravels its supremacy with 42.21% and 89.25% reduction in total power dissipation, 35.16% and 41% lower transistor count, 31.93% and 95.13% faster write speed, and 62.79% and 99.53% lesser write power delay product (PDP) compared with SHE + STT-NVFA and STT-NVFA, respectively. Using VCMA + STT-NVFA, we have developed a non-volatile (NV)-arithmetic logic unit (ALU) to perform addition, subtraction, and all the logic operations. Comparison of the same has been conducted with its CMOS counterpart to show that NV-ALU is better in terms of power dissipation, and transistor count by 12.12% and 15.71%, respectively. Furthermore, we have extended the NV-ALU for 4 bit operations to show its feasibility for higher bit operations.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-12"},"PeriodicalIF":2.1,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brushless Wound Field Synchronous Generator Design With an Optical Power Transfer","authors":"Kangbeen Lee;Hyunwoo Kim;Woongkul Lee","doi":"10.1109/TMAG.2025.3563114","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3563114","url":null,"abstract":"Rare-Earth permanent magnet-based generators offer high power density, but face challenges due to their inability to deactivate the magnetic field during failures. Wound field synchronous generators (WFSGs) have gained attention as a solution to these issues, but mechanical brushes negatively impact reliability. To address this, wireless power transfer (WPT)-based WFSGs have been proposed for their enhanced reliability, though they require low airgap passive components that hinder high-speed operation. This article presents the design and optimization of optical power transfer (OPT)-based WFSGs using photovoltaic (PV) cell excitation. The design constraints were calculated considering PV cell characteristics at maximum power point (MPP), and a finite element analysis (FEA) was conducted to analyze the characteristics of the OPT-based WFSG. Three cases were analyzed: constant optical power, constant output power, and high-speed operation. The optimal WFSG designs for efficiency and power density are identified by analyzing core and copper losses, which are calculated based on the WFSG designs and their respective design constraints. Furthermore, a feasibility study on high-speed operation explores the relationship between optical power and speed for maintaining consistent output power.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 9","pages":"1-5"},"PeriodicalIF":1.9,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144909266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic Field-Induced Alignment of Graphene Nanoplatelets in Carbon Fiber-Silicone Rubber Composites for Superior EMI Shielding and Thermal Conductivity","authors":"Gandluri Parameswarreddy;Maho Hosoki;Hisayuki Suematsu;Asapu Vinaya Kumar;Venkatachalam Subramanian;Ramanujam Sarathi;Rishi Verma;Archana Sharma","doi":"10.1109/TMAG.2025.3563124","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3563124","url":null,"abstract":"In this present study, graphene nanoplates (GNP) are aligned under the magnetic field in short carbon fiber (SCF)-polydimethylsiloxane (PDMS) composite, to understand the variation in electromagnetic interference (EMI) shielding effectiveness (SE), in X-band frequency. Initially, the GNP is aligned under the static magnetic field and with a rotating magnetic field (RMF) at lateral directions to form GNP-PDMS composites. X-ray diffraction (XRD) results indicate that the laterally applied RMF 5 wt% of GNP has a better alignment. Therefore, considering 5 wt% GNP as an optimum filler, SCF-GNP-PDMS hybrid composites are fabricated. Structural and morphological studies are carried out using XRD and HRSEM. The EMI shielding studies indicate that the laterally aligned GNP results in enhanced EMI SE of around 65.6 dB compared to the non-aligned sample giving around 58.1 dB. To understand the thermal properties, the laser flash analysis (LFA) was carried out. The thermography, thermal conductivity, and diffusion results indicate that laterally aligned samples have better heat transfer properties.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 7","pages":"1-10"},"PeriodicalIF":2.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144536518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunhui Gao;Naikun Sun;Zhen Yan;Quanhui Zhang;Juan Cheng;Jiaohong Huang;Xinguo Zhao;Yingwei Song
{"title":"Low-Temperature Deposition of Graphite Coating on La(Fe, Co, Si)13B0.2 for Room-Temperature Magnetic Refrigeration","authors":"Chunhui Gao;Naikun Sun;Zhen Yan;Quanhui Zhang;Juan Cheng;Jiaohong Huang;Xinguo Zhao;Yingwei Song","doi":"10.1109/TMAG.2025.3562599","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3562599","url":null,"abstract":"Due to the larger magnetic entropy change <inline-formula> <tex-math>$Delta S_{M}$ </tex-math></inline-formula> and the much lower raw material cost, La(Fe, Co, Si)13 materials have the potential to replace the room-temperature magnetic refrigeration prototype material Gd. In this work, we have developed a simple chemical vapor deposition (CVD) method for in situ graphite deposition on the surface of La(Fe, Co, Si)13B0.2. Facilitated by the decomposition of the solid carbon-source polyethylene glycol (PEG), the CVD process could be carried out at a low temperature of <inline-formula> <tex-math>$400~^{circ }$ </tex-math></inline-formula>C and in a short duration of 20 min, which ensures no <inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>-Fe precipitation from and carbon atom diffusion into the La–Fe–Si material. These 400–700 nm-thick coatings could significantly enhance the anti-corrosive property with a positive shift of corrosion potential <inline-formula> <tex-math>${E} _{text {corr}}$ </tex-math></inline-formula> from −788 to −600 mV and a reduction of the corrosion current density <inline-formula> <tex-math>${I} _{text {corr}}$ </tex-math></inline-formula> from <inline-formula> <tex-math>$1.67times 10^{-5}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$9.14times 10^{-6}$ </tex-math></inline-formula> A/cm2, accompanied by a concurrent enhancement of the thermal conductivity. More favorably, a large <inline-formula> <tex-math>$Delta S_{M}$ </tex-math></inline-formula> of ~4 J/kg<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>K at 286 K and a relative cooling power (RCP) value of ~98 J/kg in 0–1.5 T were maintained.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-9"},"PeriodicalIF":2.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wesley Lohr;Pavan Chaitanya;Arjun Modi;Kai Feng;Angelina Lee;Mohannad Tashli;Ravi L. Hadimani
{"title":"Novel Conformable Shielding Permalloy Composite for Controlling Field Profiles of Transcranial Magnetic Field Coils","authors":"Wesley Lohr;Pavan Chaitanya;Arjun Modi;Kai Feng;Angelina Lee;Mohannad Tashli;Ravi L. Hadimani","doi":"10.1109/TMAG.2025.3562780","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3562780","url":null,"abstract":"Permalloy nanoparticle-based composite films as a magnetic shield for transcranial magnetic stimulation (TMS) applications redirect magnetic field lines away from shielded regions to potentially protect implantable devices, mitigate overstimulation of cortical areas when targeting deep brain regions, and maintain patient comfort when compared to the non-conformable metallic shields that, due to Lorentz forces, cause noise issues when the magnetic field is applied to the metal. The shields are conformable and moldable to perfectly interface between the geometry of the TMS coil and that of the patient’s head. Our results show that a heavily loaded polydimethylsiloxane (PDMS) permalloy composite can effectively shield low strength magnetic fields from TMS coils. The composite saturates quickly with higher fields but with some modifications and further study, it shows promise as a conformable shielding material for TMS and other wearable shielding of low frequency and dc magnetic field applications. We also compared the experimental results to ANSYS Maxwell magnetostatic simulations and fully characterize the composite materials magnetic properties and microstructure.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 9","pages":"1-5"},"PeriodicalIF":1.9,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144920470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"USCIM: Computing-in-Memory With Unipolar Switching SOT-MRAM","authors":"Haiwen Li;Enyi Yao;Pei Qin;Sheng Jiang","doi":"10.1109/TMAG.2025.3561873","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3561873","url":null,"abstract":"This brief presents an arithmetic paradigm for computing-in-memory (CIM) using unipolar switching spin-orbit-torque magnetic random access memory (SOT-MRAM) devices. The proposed MRAM array comprised two transistors and one SOT magnetic tunnel junction (MTJ) cell and achieves basic Boolean logic operations [<sc>and</small>, <sc>xor</small>, <sc>or</small>, majority (MAJ)] and full-adder (FA) operations. The hybrid spintronics/CMOS simulation results show that the proposed designs improve latency and energy consumption by about 34%–132% and 212%–489% compared with the existing design, respectively. Monte Carlo simulations further prove the robustness of our design for the effectiveness of write/read operations.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Neural-Network-Based Source Reconstruction for Estimating the Emission of Linear Synchronous Motors in Vehicle Bodies","authors":"Jiahui Zhang;Dan Zhang;Yinghong Wen;Jinbao Zhang","doi":"10.1109/TMAG.2025.3561684","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3561684","url":null,"abstract":"To quickly and accurately characterize the effects of linear synchronous motors (LSMs) in the electromagnetic suspension (EMS) maglev system on the surrounding electromagnetic environment, the field-source equivalent model for electromagnetic emission with obstacles in the near zone was built using cascade neural network that integrates convolutional neural networks (CNNs) and backpropagation neural networks (BPNNs). The influence of the train body on the electromagnetic emissions of linear motors is equated with the magnetic field shielding effectiveness. Results by the proposed model were validated by measurement and full-wave simulation results.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-10"},"PeriodicalIF":2.1,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew P. Whalen;David T. Plouff;Nicholas B. Shevchenko;Mark Mirotznik;John Q. Xiao
{"title":"Development of Flexible Sendust Composite Sheets With Enhanced Magnetic Permeability for Microwave Absorbers and Antennas","authors":"Matthew P. Whalen;David T. Plouff;Nicholas B. Shevchenko;Mark Mirotznik;John Q. Xiao","doi":"10.1109/TMAG.2025.3561655","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3561655","url":null,"abstract":"The demand for high-frequency soft magnetic composites with elevated permeability and flexibility is growing for applications in microwave absorbers and magnetodielectric antennas. However, balancing high permeability with mechanical flexibility remains challenging. This study presents flexible Sendust (FeSiAl) composite sheets, fabricated with a hot-pressing technique that aligns flakes within an acrylic rubber and epoxy resin matrix. The alignment significantly enhances relative permeability at high frequencies, achieving single-layer film properties of <inline-formula> <tex-math>$mu _{r} ^{prime } =14.8$ </tex-math></inline-formula> and <inline-formula> <tex-math>$mu _{r} ^{prime prime } =20.4$ </tex-math></inline-formula> at 1 GHz, alongside high saturation magnetization (118 emu/g) and high hesitivity (44.7 k<inline-formula> <tex-math>$Omega text {m}^{-1}$ </tex-math></inline-formula>), outperforming commonly used materials such as NiZn ferrite. Our method supports customizable thickness without sacrificing permeability, establishing a versatile platform for advanced conformal microwave absorber and antenna applications.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 9","pages":"1-4"},"PeriodicalIF":1.9,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144909290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}