室温磁制冷用La(Fe, Co, Si)13B0.2石墨涂层的低温沉积

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chunhui Gao;Naikun Sun;Zhen Yan;Quanhui Zhang;Juan Cheng;Jiaohong Huang;Xinguo Zhao;Yingwei Song
{"title":"室温磁制冷用La(Fe, Co, Si)13B0.2石墨涂层的低温沉积","authors":"Chunhui Gao;Naikun Sun;Zhen Yan;Quanhui Zhang;Juan Cheng;Jiaohong Huang;Xinguo Zhao;Yingwei Song","doi":"10.1109/TMAG.2025.3562599","DOIUrl":null,"url":null,"abstract":"Due to the larger magnetic entropy change <inline-formula> <tex-math>$\\Delta S_{M}$ </tex-math></inline-formula> and the much lower raw material cost, La(Fe, Co, Si)13 materials have the potential to replace the room-temperature magnetic refrigeration prototype material Gd. In this work, we have developed a simple chemical vapor deposition (CVD) method for in situ graphite deposition on the surface of La(Fe, Co, Si)13B0.2. Facilitated by the decomposition of the solid carbon-source polyethylene glycol (PEG), the CVD process could be carried out at a low temperature of <inline-formula> <tex-math>$400~^{\\circ }$ </tex-math></inline-formula>C and in a short duration of 20 min, which ensures no <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-Fe precipitation from and carbon atom diffusion into the La–Fe–Si material. These 400–700 nm-thick coatings could significantly enhance the anti-corrosive property with a positive shift of corrosion potential <inline-formula> <tex-math>${E} _{\\text {corr}}$ </tex-math></inline-formula> from −788 to −600 mV and a reduction of the corrosion current density <inline-formula> <tex-math>${I} _{\\text {corr}}$ </tex-math></inline-formula> from <inline-formula> <tex-math>$1.67\\times 10^{-5}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$9.14\\times 10^{-6}$ </tex-math></inline-formula> A/cm2, accompanied by a concurrent enhancement of the thermal conductivity. More favorably, a large <inline-formula> <tex-math>$\\Delta S_{M}$ </tex-math></inline-formula> of ~4 J/kg<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>K at 286 K and a relative cooling power (RCP) value of ~98 J/kg in 0–1.5 T were maintained.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-9"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Temperature Deposition of Graphite Coating on La(Fe, Co, Si)13B0.2 for Room-Temperature Magnetic Refrigeration\",\"authors\":\"Chunhui Gao;Naikun Sun;Zhen Yan;Quanhui Zhang;Juan Cheng;Jiaohong Huang;Xinguo Zhao;Yingwei Song\",\"doi\":\"10.1109/TMAG.2025.3562599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the larger magnetic entropy change <inline-formula> <tex-math>$\\\\Delta S_{M}$ </tex-math></inline-formula> and the much lower raw material cost, La(Fe, Co, Si)13 materials have the potential to replace the room-temperature magnetic refrigeration prototype material Gd. In this work, we have developed a simple chemical vapor deposition (CVD) method for in situ graphite deposition on the surface of La(Fe, Co, Si)13B0.2. Facilitated by the decomposition of the solid carbon-source polyethylene glycol (PEG), the CVD process could be carried out at a low temperature of <inline-formula> <tex-math>$400~^{\\\\circ }$ </tex-math></inline-formula>C and in a short duration of 20 min, which ensures no <inline-formula> <tex-math>$\\\\alpha $ </tex-math></inline-formula>-Fe precipitation from and carbon atom diffusion into the La–Fe–Si material. These 400–700 nm-thick coatings could significantly enhance the anti-corrosive property with a positive shift of corrosion potential <inline-formula> <tex-math>${E} _{\\\\text {corr}}$ </tex-math></inline-formula> from −788 to −600 mV and a reduction of the corrosion current density <inline-formula> <tex-math>${I} _{\\\\text {corr}}$ </tex-math></inline-formula> from <inline-formula> <tex-math>$1.67\\\\times 10^{-5}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$9.14\\\\times 10^{-6}$ </tex-math></inline-formula> A/cm2, accompanied by a concurrent enhancement of the thermal conductivity. More favorably, a large <inline-formula> <tex-math>$\\\\Delta S_{M}$ </tex-math></inline-formula> of ~4 J/kg<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula>K at 286 K and a relative cooling power (RCP) value of ~98 J/kg in 0–1.5 T were maintained.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 6\",\"pages\":\"1-9\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971391/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10971391/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于La(Fe, Co, Si)13材料具有较大的磁熵变$\Delta S_{M}$和较低的原材料成本,因此具有取代室温磁制冷原型材料Gd的潜力。在这项工作中,我们开发了一种简单的化学气相沉积(CVD)方法,用于在La(Fe, Co, Si)13B0.2表面原位沉积石墨。由于固体碳源聚乙二醇(PEG)的分解,CVD工艺可以在$400~^{\circ }$℃的低温和20 min的短时间内进行,保证了没有$\alpha $ -Fe析出和碳原子扩散到La-Fe-Si材料中。这些400-700 nm厚的涂层可以显著提高防腐性能,腐蚀电位${E} _{\text {corr}}$从−788 mV正移到−600 mV,腐蚀电流密度${I} _{\text {corr}}$从$1.67\times 10^{-5}$降低到$9.14\times 10^{-6}$ a /cm2,同时热导率也得到了提高。更有利的是,在286 K时保持了4 J/kg $\cdot $ K的巨大$\Delta S_{M}$和0-1.5 T时保持了98 J/kg的相对冷却功率(RCP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Temperature Deposition of Graphite Coating on La(Fe, Co, Si)13B0.2 for Room-Temperature Magnetic Refrigeration
Due to the larger magnetic entropy change $\Delta S_{M}$ and the much lower raw material cost, La(Fe, Co, Si)13 materials have the potential to replace the room-temperature magnetic refrigeration prototype material Gd. In this work, we have developed a simple chemical vapor deposition (CVD) method for in situ graphite deposition on the surface of La(Fe, Co, Si)13B0.2. Facilitated by the decomposition of the solid carbon-source polyethylene glycol (PEG), the CVD process could be carried out at a low temperature of $400~^{\circ }$ C and in a short duration of 20 min, which ensures no $\alpha $ -Fe precipitation from and carbon atom diffusion into the La–Fe–Si material. These 400–700 nm-thick coatings could significantly enhance the anti-corrosive property with a positive shift of corrosion potential ${E} _{\text {corr}}$ from −788 to −600 mV and a reduction of the corrosion current density ${I} _{\text {corr}}$ from $1.67\times 10^{-5}$ to $9.14\times 10^{-6}$ A/cm2, accompanied by a concurrent enhancement of the thermal conductivity. More favorably, a large $\Delta S_{M}$ of ~4 J/kg $\cdot $ K at 286 K and a relative cooling power (RCP) value of ~98 J/kg in 0–1.5 T were maintained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信