基于CIM架构的VCMA + STT-MTJ/CMOS混合电路设计与性能分析

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Prashanth Barla
{"title":"基于CIM架构的VCMA + STT-MTJ/CMOS混合电路设计与性能分析","authors":"Prashanth Barla","doi":"10.1109/TMAG.2025.3563418","DOIUrl":null,"url":null,"abstract":"The emerging computation-in-memory (CIM) architecture effectively overcomes the limitations, such as memory wall and rise in the standby power dissipation associated with the conventional von-Neumann structure. In this article, we developed hybrid voltage-controlled magnetic anisotropy-assisted spin-transfer torque magnetic tunnel junction (VCMA + STT MTJ) circuits for the CIM architecture. Initially, we have proposed a novel VCMA + STT MTJ write circuit that is 63.35% and 94.86% more energy efficient with 50.87% and 59.42% lower transistors compared to spin-Hall effect-assisted (SHE) MTJ STT and STT MTJs, respectively. Subsequently, development of VCMA + STT non-volatile full adder (NVFA) with the novel write circuit unravels its supremacy with 42.21% and 89.25% reduction in total power dissipation, 35.16% and 41% lower transistor count, 31.93% and 95.13% faster write speed, and 62.79% and 99.53% lesser write power delay product (PDP) compared with SHE + STT-NVFA and STT-NVFA, respectively. Using VCMA + STT-NVFA, we have developed a non-volatile (NV)-arithmetic logic unit (ALU) to perform addition, subtraction, and all the logic operations. Comparison of the same has been conducted with its CMOS counterpart to show that NV-ALU is better in terms of power dissipation, and transistor count by 12.12% and 15.71%, respectively. Furthermore, we have extended the NV-ALU for 4 bit operations to show its feasibility for higher bit operations.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-12"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Performance Analysis of Hybrid VCMA + STT-MTJ/CMOS Circuits for CIM Architecture\",\"authors\":\"Prashanth Barla\",\"doi\":\"10.1109/TMAG.2025.3563418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging computation-in-memory (CIM) architecture effectively overcomes the limitations, such as memory wall and rise in the standby power dissipation associated with the conventional von-Neumann structure. In this article, we developed hybrid voltage-controlled magnetic anisotropy-assisted spin-transfer torque magnetic tunnel junction (VCMA + STT MTJ) circuits for the CIM architecture. Initially, we have proposed a novel VCMA + STT MTJ write circuit that is 63.35% and 94.86% more energy efficient with 50.87% and 59.42% lower transistors compared to spin-Hall effect-assisted (SHE) MTJ STT and STT MTJs, respectively. Subsequently, development of VCMA + STT non-volatile full adder (NVFA) with the novel write circuit unravels its supremacy with 42.21% and 89.25% reduction in total power dissipation, 35.16% and 41% lower transistor count, 31.93% and 95.13% faster write speed, and 62.79% and 99.53% lesser write power delay product (PDP) compared with SHE + STT-NVFA and STT-NVFA, respectively. Using VCMA + STT-NVFA, we have developed a non-volatile (NV)-arithmetic logic unit (ALU) to perform addition, subtraction, and all the logic operations. Comparison of the same has been conducted with its CMOS counterpart to show that NV-ALU is better in terms of power dissipation, and transistor count by 12.12% and 15.71%, respectively. Furthermore, we have extended the NV-ALU for 4 bit operations to show its feasibility for higher bit operations.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 6\",\"pages\":\"1-12\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10973148/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10973148/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

新兴的内存计算(CIM)架构有效地克服了传统冯-诺伊曼结构所带来的存储壁和待机功耗上升等限制。在本文中,我们开发了用于CIM架构的混合电压控制磁各向异性辅助自旋转移转矩磁隧道结(VCMA + STT MTJ)电路。首先,我们提出了一种新的VCMA + STT MTJ写入电路,与自旋霍尔效应辅助(SHE) MTJ STT和STT MTJ相比,其能效分别提高了63.35%和94.86%,晶体管数量分别减少了50.87%和59.42%。随后,采用新型写入电路的VCMA + STT非易失性全加器(NVFA)的开发与SHE + STT-NVFA和STT-NVFA相比,其总功耗分别降低42.21%和89.25%,晶体管数量分别减少35.16%和41%,写入速度分别提高31.93%和95.13%,写入功率延迟产品(PDP)分别降低62.79%和99.53%。利用VCMA + STT-NVFA,我们开发了一个非易失性(NV)算术逻辑单元(ALU)来执行加法、减法和所有的逻辑运算。将NV-ALU与CMOS器件进行了比较,结果表明NV-ALU在功耗和晶体管数量方面分别优于CMOS器件12.12%和15.71%。此外,我们还将NV-ALU扩展为4位运算,以证明其适用于更高位运算的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Performance Analysis of Hybrid VCMA + STT-MTJ/CMOS Circuits for CIM Architecture
The emerging computation-in-memory (CIM) architecture effectively overcomes the limitations, such as memory wall and rise in the standby power dissipation associated with the conventional von-Neumann structure. In this article, we developed hybrid voltage-controlled magnetic anisotropy-assisted spin-transfer torque magnetic tunnel junction (VCMA + STT MTJ) circuits for the CIM architecture. Initially, we have proposed a novel VCMA + STT MTJ write circuit that is 63.35% and 94.86% more energy efficient with 50.87% and 59.42% lower transistors compared to spin-Hall effect-assisted (SHE) MTJ STT and STT MTJs, respectively. Subsequently, development of VCMA + STT non-volatile full adder (NVFA) with the novel write circuit unravels its supremacy with 42.21% and 89.25% reduction in total power dissipation, 35.16% and 41% lower transistor count, 31.93% and 95.13% faster write speed, and 62.79% and 99.53% lesser write power delay product (PDP) compared with SHE + STT-NVFA and STT-NVFA, respectively. Using VCMA + STT-NVFA, we have developed a non-volatile (NV)-arithmetic logic unit (ALU) to perform addition, subtraction, and all the logic operations. Comparison of the same has been conducted with its CMOS counterpart to show that NV-ALU is better in terms of power dissipation, and transistor count by 12.12% and 15.71%, respectively. Furthermore, we have extended the NV-ALU for 4 bit operations to show its feasibility for higher bit operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信