In Vitro Cellular & Developmental Biology. Animal最新文献

筛选
英文 中文
A cell line derived from the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). 从黑兵蝇(Hermetia illucens,双翅目:Stratiomyidae)中提取的细胞系。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-05-01 Epub Date: 2024-06-27 DOI: 10.1007/s11626-024-00934-y
Stephen Saathoff, Cynthia L Goodman, Eric Haas, Ian Mettelmann, David Stanley
{"title":"A cell line derived from the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae).","authors":"Stephen Saathoff, Cynthia L Goodman, Eric Haas, Ian Mettelmann, David Stanley","doi":"10.1007/s11626-024-00934-y","DOIUrl":"10.1007/s11626-024-00934-y","url":null,"abstract":"<p><p>Insect cell lines are effective tools used in industry and academia. For example, they are used in screening potential insecticides, in making certain proteins for biomedical applications, and in basic research into insect biology. So far, there are no cell lines derived from the black soldier fly, Hermetia illucens (BSF). This may become an issue because BSFs are employed in a range of industrial and household processes. BSFs are used in producing biodiesel, in developing cosmetics and skin creams, and in the production of some medicines and animal feeds. BSF larvae process waste streams from a variety of sources into food for some animals and are also used in household composting. Our BSF cell line, designated BCIRL-HiE0122021-SGS, was developed from eggs using the medium CLG#2 (50% L-15 + 50% EX-CELL 420, with 9% FBS and antibiotics), with many other media being tested. This cell line consists of attached cells with a variety of morphologies and its identity was authenticated using CO1 barcoding. A growth curve was generated and the resulting doubling time was 118 h. We quantified the fatty acid methyl esters (FAMES) and recorded the expected range of saturated, monounsaturated, and polyunsaturated FAMEs, with only trace levels of lauric acid being noted. The BSF cell line is available free of charge by request.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"506-510"},"PeriodicalIF":1.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and characterization of polyvinyl alcohol/gelatin/chitosan hydrogel for tissue engineering and wound healing applications using a fish cell line model. 利用鱼细胞系模型开发和鉴定用于组织工程和伤口愈合的聚乙烯醇/明胶/壳聚糖水凝胶。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-05-01 Epub Date: 2024-12-13 DOI: 10.1007/s11626-024-00996-y
Sivaraj Mithra, Ali Asna Jabeen, Vinay Kumar, Seepoo Abdul Majeed, Manickam Balu Balaji, Sugumar Vimal, Dawood Mubeen Sultana, Sakvai Mohammed Safiullah, Gani Taju, Azeez Sait Sahul Hameed
{"title":"Development and characterization of polyvinyl alcohol/gelatin/chitosan hydrogel for tissue engineering and wound healing applications using a fish cell line model.","authors":"Sivaraj Mithra, Ali Asna Jabeen, Vinay Kumar, Seepoo Abdul Majeed, Manickam Balu Balaji, Sugumar Vimal, Dawood Mubeen Sultana, Sakvai Mohammed Safiullah, Gani Taju, Azeez Sait Sahul Hameed","doi":"10.1007/s11626-024-00996-y","DOIUrl":"10.1007/s11626-024-00996-y","url":null,"abstract":"<p><p>Chitosan-based hydrogels have gained considerable attention in biomedical research due to their inherent biocompatibility, biodegradability, and non-toxicity. When combined with polyvinyl alcohol (PVA), the resulting hydrogels exhibit superior mechanical strength, elasticity, and swelling capacity, making them highly suitable for a range of applications, including wound healing, tissue engineering, and controlled drug delivery. In this study, we synthesized and characterized a novel PVA/gelatin/chitosan (PVA/G/C) hydrogel composite using a series of analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDAX). The morphological, structural, and compositional analyses confirmed the successful formation of a homogenous, porous network conducive to cell proliferation and nutrient diffusion. In this study, polyvinyl alcohol/gelatin/chitosan-based hydrogels were prepared to study the potential for micro-tissue formation and wound healing application using Danio rerio gill (DrG) and Danio rerio fin (DrF) cell lines, respectively. Overall, the findings indicated the potential use of PVA/G/C hydrogel films as wound dressings. The idea of creating physically cross-linked hydrogels of PVA and chitosan without using any harmful organic chemicals or solvents is the novelty of this work. This study highlights the versatility and potential of PVA/G/C hydrogels, not only as a promising material for wound healing and drug delivery but also as an effective scaffold for tissue engineering applications.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"571-581"},"PeriodicalIF":1.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using cationic liposomes as carriers for long dsRNA to trigger an antiviral response in rainbow trout cell lines. 利用阳离子脂质体作为长dsRNA载体在虹鳟鱼细胞系中触发抗病毒反应。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-05-01 Epub Date: 2025-01-09 DOI: 10.1007/s11626-024-01002-1
Shayne J Oberhoffner, Dominique E Daniels, Erin Cooper, Aizah Ijaz, Starla A Richardson, Stephanie J DeWitte-Orr
{"title":"Using cationic liposomes as carriers for long dsRNA to trigger an antiviral response in rainbow trout cell lines.","authors":"Shayne J Oberhoffner, Dominique E Daniels, Erin Cooper, Aizah Ijaz, Starla A Richardson, Stephanie J DeWitte-Orr","doi":"10.1007/s11626-024-01002-1","DOIUrl":"10.1007/s11626-024-01002-1","url":null,"abstract":"<p><p>Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space. In this study, commercially available cationic liposomes composed of stearylamine, L-α-phosphatidylcholine, and cholesterol were analyzed for their ability to encapsulate and deliver a 621-bp dsRNA sequence. This encapsulated dsRNA was delivered to two Oncorhynchus mykiss cell lines, RTG-2 and RTgill-W1, to activate the IFN pathway and reduce chum salmon reovirus (CSV) infection. EMSA analysis revealed that the liposomes effectively encapsulated 55 and 800 µg/mL doses of dsRNA, remained stable when stored at 4°C and - 20°C, and protected the encapsulated dsRNA from degradation by RNase III. Cell viability assays determined that liposomes loaded with dsRNA were highly cytotoxic after 24 h of exposure. A shorter exposure of 2 h resulted in reduced cytotoxicity and enhanced expression of the ISG Mx1 in both dsRNA alone and dsRNA-liposome-treated cells; however, the elevated Mx1 induction was not sufficient in the dsRNA-liposome treatment group to provide protection against viral infection. Meanwhile, the unencapsulated dsRNA significantly reduced the CSV titer and amount of syncytia formation. Thus, while dsRNA represents an important immune modulator in fish cells, this liposome formulation is too toxic for antiviral applications.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"591-600"},"PeriodicalIF":1.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of beauvericin on rainbow trout intestinal epithelial cells at different temperatures and dosing methods. 不同温度和给药方式下beauvericin对虹鳟鱼肠上皮细胞的影响。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-05-01 Epub Date: 2025-02-03 DOI: 10.1007/s11626-025-01014-5
Vivian R Dayeh, Anita Solhaug, Mark E Hamilton, Laura E Linton, Lucy E J Lee, Niels C Bols
{"title":"The impact of beauvericin on rainbow trout intestinal epithelial cells at different temperatures and dosing methods.","authors":"Vivian R Dayeh, Anita Solhaug, Mark E Hamilton, Laura E Linton, Lucy E J Lee, Niels C Bols","doi":"10.1007/s11626-025-01014-5","DOIUrl":"10.1007/s11626-025-01014-5","url":null,"abstract":"<p><p>Mycotoxins in aquatic feeds and their effects on fish are becoming more important in aquaculture, as fishmeal and fish oil in feeds are being replaced with more sustainable plant protein. Here, we investigated the potential of the mycotoxin, beauvericin (BEA), to impact the rainbow trout (RT) intestine by using cultures of the epithelial cell line, RTgutGC. BEA was dosed in different ways and exposed at temperatures ranging from 4 to 26 °C before being evaluated for cell viability by the metabolic reduction of Alamar Blue, by the accumulation of Neutral Red (lysosomal activity), cytotoxicity (CellTox Green), and for wound healing. BEA induces cell death in RTgutGC cells. The lysosomes are the main target (Neutral Red assay is the most sensitive) while cytotoxicity and plasma membrane rupture (CellTox Green) occur at considerably higher concentrations. BEA caused a dose-dependent decline in Neutral Red reading at all tested temperatures but Alamar Blue readings did not decline at 4 °C. Under these conditions, BEA appears to impair only lysosomal activity. Wound healing was reduced at 4, 10, and 26 °C compared to 18 °C. Also BEA treatment, at non-cytotoxic concentrations, reduced wound healing, but the temperature had little influence on this. Different carrier vehicles (methanol, DMSO) and exposure methods (passive or active dispersal) for BEA exposure were also studied. Here, methanol and passive dispersal gave comparable results to exposure with DMSO and active dispersal. In contrast, when DMSO was dosed with passive dispersal, immediate cytotoxicity in combination with BEA was induced.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"614-626"},"PeriodicalIF":1.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Painting of insect gut cells for exploration of molecular responses of insect epithelia to insecticides. 昆虫肠道细胞的细胞绘画,探索昆虫上皮对杀虫剂的分子反应。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-05-01 Epub Date: 2025-03-17 DOI: 10.1007/s11626-025-01028-z
Franziska Annabelle Hecker, Bruno Leggio, Tim Koenig, Karsten Niehaus, Sven Geibel
{"title":"Cell Painting of insect gut cells for exploration of molecular responses of insect epithelia to insecticides.","authors":"Franziska Annabelle Hecker, Bruno Leggio, Tim Koenig, Karsten Niehaus, Sven Geibel","doi":"10.1007/s11626-025-01028-z","DOIUrl":"10.1007/s11626-025-01028-z","url":null,"abstract":"<p><p>Cell Painting is a sophisticated high-content imaging technique that has been predominantly applied to mammalian cells. Recent advancements have extended its applicability to the first insect cell line, the ovarian cell line Sf9, revealing significant insights into similarities and differences in cellular responses between different taxonomic groups. This study explores the utility of Cell Painting in Helicoverpa zea gut-derived cells, specifically the RP-HzGUT-AW1 cell line, to assess the specifics of insect epithelial cells in response to chemical treatments. Upon adaptation of the analysis pipeline to accommodate their unique morphology and characteristics, our investigations revealed distinct responses of RP-HzGUT-AW1 cells compared to the ovarian insect cell line Sf9. Variations were obtained not only in the dose-response behavior to treatments but also in the overall detectability of specific modes of action. Specifically, processes that relate to osmoregulation and the formation of epithelial structures showed the most significant and distinct responses. This suggests that the specific morphological and physiological attributes of these gut-derived insect cells contribute to unique phenotypic profiles, which enables in-depth interpretation of drug efficacy and safety in these models.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"515-524"},"PeriodicalIF":1.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143648372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryopreservation of biological materials: applications and economic perspectives. 生物材料的低温保存:应用和经济前景。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-04-23 DOI: 10.1007/s11626-025-01027-0
Suja Aarattuthodi, David Kang, Sanjay Kumar Gupta, Paula Chen, Bethany Redel, Moureen Matuha, Haitham Mohammed, Amit Kumar Sinha
{"title":"Cryopreservation of biological materials: applications and economic perspectives.","authors":"Suja Aarattuthodi, David Kang, Sanjay Kumar Gupta, Paula Chen, Bethany Redel, Moureen Matuha, Haitham Mohammed, Amit Kumar Sinha","doi":"10.1007/s11626-025-01027-0","DOIUrl":"https://doi.org/10.1007/s11626-025-01027-0","url":null,"abstract":"<p><p>Cryopreservation is a transformative technology that allows for the long-term storage of biological materials by cooling them to extremely low temperatures at which metabolic and biochemical processes are effectively slowed or halted. Cryopreservation utilizes various techniques to minimize ice crystal formation and cellular damage during freezing and thawing processes. This technology has broad applications in the fields of medicine, agriculture, and conservation, spanning across stem cell research, reproductive and regenerative medicine, organ transplantation, and cell-based therapies, each with significant economic implications. While current techniques and their associated costs present certain challenges, ongoing research advancements related to cryoprotectants, cooling methods, and automation promise to enhance efficiency and accessibility, potentially broadening the technology's impact across various sectors. This review focuses on the applications of cryopreservation, research advancements, and economic implications, emphasizing the importance of continued research to overcome the current limitations.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative genotoxicity study of agrochemicals: nuclear abnormalities, comet assay, and gene expression alterations. 农用化学品的比较遗传毒性研究:核异常、彗星试验和基因表达改变。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-04-22 DOI: 10.1007/s11626-025-01030-5
Ankita Salunke, Parth Pandya, Bhumi Thakkar, Pragna Parikh
{"title":"A comparative genotoxicity study of agrochemicals: nuclear abnormalities, comet assay, and gene expression alterations.","authors":"Ankita Salunke, Parth Pandya, Bhumi Thakkar, Pragna Parikh","doi":"10.1007/s11626-025-01030-5","DOIUrl":"https://doi.org/10.1007/s11626-025-01030-5","url":null,"abstract":"<p><p>Agrochemicals (AGs) are known for their ability to have a negative impact on the health of non-target species, despite the fact that they are meant to protect agricultural plants from harmful pests. Catla catla (Hamilton, 1822) gill cells (ICG) were exposed to four AGs: insecticide (Imidacloprid (IMI)), fungicide (Curzate (CZ)), herbicide (pyrazosulfuron ethyl (PE)), and fertilizer micronutrients (MN) with sublethal concentrations 1/20th, 1/10th, and 1/5th of IC<sub>50</sub>, described here as low dose (LD), medium dose (MD), and high dose (HD), respectively. A significant dose-dependent increase in the nuclear abnormalities such as micronuclei formation, bi-nucleated, and lobbed nucleated cells was observed in ICG cells treated with AGs. Of all the AGs, maximum alterations were observed with the HD of IMI followed by CZ, PE, and MN. Concurrently, the genotoxicity was determined by performing comet assays with high dose of all AGs. The gene expression of dnmt and cyp p450 were also studied through q-PCR in ICG cells. The significant increase in expression as well as alteration in cyp p450 and dnmt sequence was reported in ICG cells exposed to HD of IMI. This suggests that IMI has a genotoxic effect and may lead to epigenetic alterations.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment of an embryonic cell line of Grapholita molesta (Lepidoptera: Tortricidae) and in vitro replication of Cydia pomonella granulovirus in it. 小圆蛾(鳞翅目:圆蛾科)胚胎细胞系的建立及卵圆蛾颗粒病毒的体外复制。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-04-14 DOI: 10.1007/s11626-025-01036-z
Gui-Ling Zheng, Yu-Fan Yao, Xiao-Yu Zhang, Qian-Long Yu, Jie Li, Yi-Ping Li, Dong Chu, Chang-You Li
{"title":"Establishment of an embryonic cell line of Grapholita molesta (Lepidoptera: Tortricidae) and in vitro replication of Cydia pomonella granulovirus in it.","authors":"Gui-Ling Zheng, Yu-Fan Yao, Xiao-Yu Zhang, Qian-Long Yu, Jie Li, Yi-Ping Li, Dong Chu, Chang-You Li","doi":"10.1007/s11626-025-01036-z","DOIUrl":"https://doi.org/10.1007/s11626-025-01036-z","url":null,"abstract":"<p><p>The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), is a major pest of fruit trees worldwide. In this study, an embryonic cell line QAU-Gm-E-L of the oriental fruit moth was successfully established. The cells grew adherently, round cells and spindle cells accounted for 43.0% and 42.2% of the total population, respectively, and rod-shaped cells accounted for 14.8%. The amplified mitochondrial cytochrome oxidase I subunit (CoI) gene fragment was 651 bp in length, and its similarity with the CoI gene of the oriental fruit moth was 100%. The chromosomes of QAU-Gm-E-L cells were granular or short rod-shaped. Its number varied from 66 to 444, indicating that aneuploidy occurred. The observations were consistent with the chromosome characteristics of lepidopteran insect cell lines. The population doubling time of QAU-Gm-E-L cells was 27.64 h. Real-time fluorescence quantitative polymerase chain reaction (qPCR) confirmed that the number of copies of Cydia pomonella granulovirus (CpGV) gradually increased in QAU-Gm-E-L cells with inoculation time. The electron microscopy observations results showed that occlusion bodies (OBs) of CpGV could be formed in the cells at 4 d post-infection; a large number of OBs were seen in the cells at 8 d post-infection. Hence, the QAU-Gm-E-L cells can support the in vitro replication and proliferation of CpGV, and it will provide an ideal material for the molecular biology research of oriental fruit moth and CpGV.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144012807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improve your success with fish cell lines-small things that matter. 提高鱼细胞系的成功率——小事情很重要。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-04-09 DOI: 10.1007/s11626-025-01042-1
Anita Solhaug, Georgina C Dowd, Vivian R Dayeh, Hilde Sindre, Lucy E J Lee, Niels C Bols
{"title":"Improve your success with fish cell lines-small things that matter.","authors":"Anita Solhaug, Georgina C Dowd, Vivian R Dayeh, Hilde Sindre, Lucy E J Lee, Niels C Bols","doi":"10.1007/s11626-025-01042-1","DOIUrl":"https://doi.org/10.1007/s11626-025-01042-1","url":null,"abstract":"<p><p>There is a drive towards reducing animal experiments and developing robust biologically relevant in vitro models based on cell lines, including those derived from fish. At the time of writing, Cellosaurus, the knowledge base of current cell lines used in research, listed more than 900 fish cell lines in its database. One of the key challenges facing fish cell biology is the lack of fundamental technical information regarding the isolation, culture, and application of cell lines. Researchers often work in silos, encountering similar technical challenges, each spending significant time and resources overcoming the same issues for which solutions may not be readily accessible. Here, we share some of the key considerations for the isolation, culture, maintenance, and application of fish cell lines in toxicology, which we have encountered over our collective decades of experience.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of small-scale laboratory-grown cell-based fish meat from Asian seabass muscle and fin cell lines. 以亚洲海鱼肌肉和鱼鳍细胞系为原料生产小规模实验室培养的细胞鱼肉。
IF 1.5 4区 生物学
In Vitro Cellular & Developmental Biology. Animal Pub Date : 2025-04-08 DOI: 10.1007/s11626-025-01040-3
Sivaraj Mithra, Seepoo Abdul Majeed, Shaik Abdullah Eisa Abdullah, Ganesan Ajay Pathra, Gani Taju, Isaac Sarojini Bright Singh, Perumal Santhanam, Azeez Sait Sahul Hameed
{"title":"Production of small-scale laboratory-grown cell-based fish meat from Asian seabass muscle and fin cell lines.","authors":"Sivaraj Mithra, Seepoo Abdul Majeed, Shaik Abdullah Eisa Abdullah, Ganesan Ajay Pathra, Gani Taju, Isaac Sarojini Bright Singh, Perumal Santhanam, Azeez Sait Sahul Hameed","doi":"10.1007/s11626-025-01040-3","DOIUrl":"https://doi.org/10.1007/s11626-025-01040-3","url":null,"abstract":"<p><p>Aquaculture is essential to satisfying the world's increasing demand for seafood. Likewise, overfishing is becoming more common across the world, inflicting tremendous damage to the marine environment. There is a critical need for protecting sustainable fishing resources to fulfil the increasing demand for seafood. The current work focuses on the cells derived from Asian seabass muscle (SBM) and Asian seabass fin (SBF) for producing cell-based fish meat. SBM and SBF cells were seeded separately in the TubeSpin bioreactor and placed on a 3D orbital rocker. Cell sheets formed on the TubeSpin were detached and formed spheroid-like structures. These structures aggregated and formed visible tissue-like structures on 45 d of culture. Immunotyping results revealed that the presence of myosin in the cells of muscle and fin tissue, and indicating that these cells might have originated from myoblasts. The origin of cultured tissue from SBM and SBF cell lines was confirmed by amplification and sequencing of the L. calcarifer specific mitochondrial larger subunit rRNA gene. Additionally, these cells could be cultivated in multilayered forms that were appropriate for large-scale production. This approach provides a new method for the production of cell-based, laboratory-grown meat from the Asian seabass muscle and fin cell lines.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信