{"title":"微纹基质与转化生长因子-β1通过调节Krϋppel-like因子4对人间充质干细胞向血管平滑肌细胞分化的协同作用","authors":"Sakhavat Abolhasani, Davood Fattahi, Yasin Ahmadi, Behnaz Valipour, Majid Ghasemian, Masoumeh Rajabibazl, Khalil Maleki Chollou","doi":"10.1007/s11626-025-01033-2","DOIUrl":null,"url":null,"abstract":"<p><p>The functionality and structural integrity of the cardiovascular system are critically dependent on vascular smooth muscle cells (VSMCs). Human mesenchymal stem cells (hMSCs) have significant potential for differentiating into VSMCs, making them a valuable resource in regenerative medicine and the development of vascular grafts. This study explored the synergistic effects of micropatterned substrates and TGF-β1 on the differentiation of hMSCs into VSMCs. HMSCs were cultured on both micropatterned and flat substrates for a duration of 6 days, with some groups receiving TGF-β1 treatment, after which cell morphology and the expression of specific smooth muscle markers were evaluated through Western blotting, immunofluorescence staining, and RT-qPCR. Results indicated that hMSCs on micropatterned substrates treated with TGF-β1 exhibited significantly elevated protein levels of smooth muscle myosin heavy chain (MYH11) compared with hMSCs on flat substrates without TGF-β1 (p < 0.001). Additionally, MYH11 expression was markedly enhanced in samples cultured on micropatterned substrates with TGF-β1. Furthermore, hMSCs treated with TGF-β1 on flat substrates exhibited increased cadherin-11 mRNA expression compared with both micropatterned and flat substrates lacking TGF-β1 (p < 0.05). Interestingly, KLF4 protein levels were significantly higher in hMSCs on flat substrates without TGF-β1 compared to those cultured on micropatterned substrates with TGF-β1 treatment (p < 0.001). In conclusion, this study demonstrated that the combination of micropatterned substrates and TGF-β1 treatment preferentially enhances MYH11 expression, indicative of advanced smooth muscle cell organization, along with modulating KLF4 levels and upregulating cadherin-11 expression in hMSCs. These findings provide critical insights into the differentiation pathways of MSCs into VSMCs and may inform the design of improved vascular grafts that better replicate the properties of native blood vessels.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of micropatterned substrates and transforming growth factor-β1 on differentiation of human mesenchymal stem cells into vascular smooth muscle cells through modulation of Krϋppel-like factor 4.\",\"authors\":\"Sakhavat Abolhasani, Davood Fattahi, Yasin Ahmadi, Behnaz Valipour, Majid Ghasemian, Masoumeh Rajabibazl, Khalil Maleki Chollou\",\"doi\":\"10.1007/s11626-025-01033-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The functionality and structural integrity of the cardiovascular system are critically dependent on vascular smooth muscle cells (VSMCs). Human mesenchymal stem cells (hMSCs) have significant potential for differentiating into VSMCs, making them a valuable resource in regenerative medicine and the development of vascular grafts. This study explored the synergistic effects of micropatterned substrates and TGF-β1 on the differentiation of hMSCs into VSMCs. HMSCs were cultured on both micropatterned and flat substrates for a duration of 6 days, with some groups receiving TGF-β1 treatment, after which cell morphology and the expression of specific smooth muscle markers were evaluated through Western blotting, immunofluorescence staining, and RT-qPCR. Results indicated that hMSCs on micropatterned substrates treated with TGF-β1 exhibited significantly elevated protein levels of smooth muscle myosin heavy chain (MYH11) compared with hMSCs on flat substrates without TGF-β1 (p < 0.001). Additionally, MYH11 expression was markedly enhanced in samples cultured on micropatterned substrates with TGF-β1. Furthermore, hMSCs treated with TGF-β1 on flat substrates exhibited increased cadherin-11 mRNA expression compared with both micropatterned and flat substrates lacking TGF-β1 (p < 0.05). Interestingly, KLF4 protein levels were significantly higher in hMSCs on flat substrates without TGF-β1 compared to those cultured on micropatterned substrates with TGF-β1 treatment (p < 0.001). In conclusion, this study demonstrated that the combination of micropatterned substrates and TGF-β1 treatment preferentially enhances MYH11 expression, indicative of advanced smooth muscle cell organization, along with modulating KLF4 levels and upregulating cadherin-11 expression in hMSCs. These findings provide critical insights into the differentiation pathways of MSCs into VSMCs and may inform the design of improved vascular grafts that better replicate the properties of native blood vessels.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-025-01033-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01033-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Synergistic effects of micropatterned substrates and transforming growth factor-β1 on differentiation of human mesenchymal stem cells into vascular smooth muscle cells through modulation of Krϋppel-like factor 4.
The functionality and structural integrity of the cardiovascular system are critically dependent on vascular smooth muscle cells (VSMCs). Human mesenchymal stem cells (hMSCs) have significant potential for differentiating into VSMCs, making them a valuable resource in regenerative medicine and the development of vascular grafts. This study explored the synergistic effects of micropatterned substrates and TGF-β1 on the differentiation of hMSCs into VSMCs. HMSCs were cultured on both micropatterned and flat substrates for a duration of 6 days, with some groups receiving TGF-β1 treatment, after which cell morphology and the expression of specific smooth muscle markers were evaluated through Western blotting, immunofluorescence staining, and RT-qPCR. Results indicated that hMSCs on micropatterned substrates treated with TGF-β1 exhibited significantly elevated protein levels of smooth muscle myosin heavy chain (MYH11) compared with hMSCs on flat substrates without TGF-β1 (p < 0.001). Additionally, MYH11 expression was markedly enhanced in samples cultured on micropatterned substrates with TGF-β1. Furthermore, hMSCs treated with TGF-β1 on flat substrates exhibited increased cadherin-11 mRNA expression compared with both micropatterned and flat substrates lacking TGF-β1 (p < 0.05). Interestingly, KLF4 protein levels were significantly higher in hMSCs on flat substrates without TGF-β1 compared to those cultured on micropatterned substrates with TGF-β1 treatment (p < 0.001). In conclusion, this study demonstrated that the combination of micropatterned substrates and TGF-β1 treatment preferentially enhances MYH11 expression, indicative of advanced smooth muscle cell organization, along with modulating KLF4 levels and upregulating cadherin-11 expression in hMSCs. These findings provide critical insights into the differentiation pathways of MSCs into VSMCs and may inform the design of improved vascular grafts that better replicate the properties of native blood vessels.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.