{"title":"LncRNA TDRG1通过miR-7-5p/G3BP2促进高糖诱导的视网膜微血管内皮细胞损伤。","authors":"Shuying Xie, Zehong Liu, Ting Luo, Yifa Chen, Liqun Zeng, Xiaoyan Li","doi":"10.1007/s11626-025-01056-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the mechanism of lncRNA TDRG1 in high glucose (HG)-induced human retinal microvascular endothelial cell (hRMEC) injury. hRMECs were cultured in HG medium, followed by the detection of cell viability, proliferation, migration, and angiogenesis using CCK-8, EdU, Transwell, and tube formation assays. LncRNA TDRG1, miR-7-5p, G3BP2, VEGFA, and CD31 expression in hRMECs was detected by RT-qPCR or western blot. After transfection with lncRNA TDRG1 siRNA or miR-7-5p inhibitor or G3BP2 pcDNA3.1, hRMEC injury induced by HG was evaluated. Dual luciferase, RIP, or RNA pull-down assays were performed to verify the binding of lncRNA TDRG1, miR-7-5p, and G3BP2. HG treatment notably elevated the expressions of lncRNA TDRG1 and G3BP2 in hRMECs but diminished the expression of miR-7-5p. Low expression of lncRNA TDRG1 restrained the proliferation, migration, and angiogenesis of hRMECs while diminishing VEGFA and CD31 expression. Mechanistically, lncRNA TDRG1 upregulated the transcription level of G3BP2 by competitively binding to miR-7-5p. Low expression of miR-7-5p or overexpression of G3BP2 weakened the inhibitory effect of lncRNA TDRG1 silencing on HG-induced hRMEC injury. In conclusion, lncRNA TDRG1 upregulates the transcription level of G3BP2 by competitively binding to miR-7-5p, thus exacerbating HG-induced hRMEC injury.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA TDRG1 facilitates high glucose-induced retinal microvascular endothelial cell injury via miR-7-5p/G3BP2.\",\"authors\":\"Shuying Xie, Zehong Liu, Ting Luo, Yifa Chen, Liqun Zeng, Xiaoyan Li\",\"doi\":\"10.1007/s11626-025-01056-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the mechanism of lncRNA TDRG1 in high glucose (HG)-induced human retinal microvascular endothelial cell (hRMEC) injury. hRMECs were cultured in HG medium, followed by the detection of cell viability, proliferation, migration, and angiogenesis using CCK-8, EdU, Transwell, and tube formation assays. LncRNA TDRG1, miR-7-5p, G3BP2, VEGFA, and CD31 expression in hRMECs was detected by RT-qPCR or western blot. After transfection with lncRNA TDRG1 siRNA or miR-7-5p inhibitor or G3BP2 pcDNA3.1, hRMEC injury induced by HG was evaluated. Dual luciferase, RIP, or RNA pull-down assays were performed to verify the binding of lncRNA TDRG1, miR-7-5p, and G3BP2. HG treatment notably elevated the expressions of lncRNA TDRG1 and G3BP2 in hRMECs but diminished the expression of miR-7-5p. Low expression of lncRNA TDRG1 restrained the proliferation, migration, and angiogenesis of hRMECs while diminishing VEGFA and CD31 expression. Mechanistically, lncRNA TDRG1 upregulated the transcription level of G3BP2 by competitively binding to miR-7-5p. Low expression of miR-7-5p or overexpression of G3BP2 weakened the inhibitory effect of lncRNA TDRG1 silencing on HG-induced hRMEC injury. In conclusion, lncRNA TDRG1 upregulates the transcription level of G3BP2 by competitively binding to miR-7-5p, thus exacerbating HG-induced hRMEC injury.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-025-01056-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01056-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
LncRNA TDRG1 facilitates high glucose-induced retinal microvascular endothelial cell injury via miR-7-5p/G3BP2.
This study explores the mechanism of lncRNA TDRG1 in high glucose (HG)-induced human retinal microvascular endothelial cell (hRMEC) injury. hRMECs were cultured in HG medium, followed by the detection of cell viability, proliferation, migration, and angiogenesis using CCK-8, EdU, Transwell, and tube formation assays. LncRNA TDRG1, miR-7-5p, G3BP2, VEGFA, and CD31 expression in hRMECs was detected by RT-qPCR or western blot. After transfection with lncRNA TDRG1 siRNA or miR-7-5p inhibitor or G3BP2 pcDNA3.1, hRMEC injury induced by HG was evaluated. Dual luciferase, RIP, or RNA pull-down assays were performed to verify the binding of lncRNA TDRG1, miR-7-5p, and G3BP2. HG treatment notably elevated the expressions of lncRNA TDRG1 and G3BP2 in hRMECs but diminished the expression of miR-7-5p. Low expression of lncRNA TDRG1 restrained the proliferation, migration, and angiogenesis of hRMECs while diminishing VEGFA and CD31 expression. Mechanistically, lncRNA TDRG1 upregulated the transcription level of G3BP2 by competitively binding to miR-7-5p. Low expression of miR-7-5p or overexpression of G3BP2 weakened the inhibitory effect of lncRNA TDRG1 silencing on HG-induced hRMEC injury. In conclusion, lncRNA TDRG1 upregulates the transcription level of G3BP2 by competitively binding to miR-7-5p, thus exacerbating HG-induced hRMEC injury.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.