Bo Deng, Xuegang He, Zhaoheng Wang, Jihe Kang, Guangzhi Zhang, Lei Li, Xuewen Kang
{"title":"HSP70 protects PC12 cells against TBHP-induced apoptosis and oxidative stress by activating the Nrf2/HO-1 signaling pathway.","authors":"Bo Deng, Xuegang He, Zhaoheng Wang, Jihe Kang, Guangzhi Zhang, Lei Li, Xuewen Kang","doi":"10.1007/s11626-024-00924-0","DOIUrl":"10.1007/s11626-024-00924-0","url":null,"abstract":"<p><p>HSP70 exhibits neuroprotective, antioxidant, and anti-apoptotic properties, which are crucial in preventing spinal cord injury (SCI) induced by oxidative stress and apoptosis. In this study, we assessed the potential protective effects and underlying mechanisms of HSP70 on tert-butyl hydroperoxide (TBHP)-damaged PC12 cells in an in vitro model of SCI. To establish the model, PC12 cells were subjected to oxidative damage induced by TBHP, followed by overexpression of HSP70. Cell viability was assessed using the CCK8 kit, intracellular reactive oxygen species level was evaluated using a commercial kit, cell apoptosis was detected using the Annexin V-APC/7-ADD Apoptosis Detection Kit, and the oxidative stress level was determined using SOD and MDA assay kits. Western blot analysis was used to detect the expression levels of Bax, cleaved caspase-3, and Bcl-2 proteins. Furthermore, immunofluorescence staining and Western bolt were used to detect the expression levels of proteins associated with the Nrf2/HO-1 signaling pathway. We found that HSP70 overexpression reduced apoptosis and oxidative stress in TBHP-induced PC12 cells. Furthermore, it activated the Nrf2/HO-1 signaling pathway. In addition, the Nrf2 inhibitor ML385 attenuated the protective effects of HSP70 on TBHP-induced PC12 cells. In conclusion, HSP70 can partially alleviate TBHP-induced apoptosis and oxidative stress in PC12 cells by promoting the Nrf2/HO-1 signaling pathway.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"868-878"},"PeriodicalIF":1.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141160571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization and arbovirus susceptibility of cultured CERNI cells derived from sika deer (Cervus nippon).","authors":"Makoto Takeishi, Shigeru Morikawa, Ryusei Kuwata, Mitsumori Kawaminami, Hiroshi Shimoda, Haruhiko Isawa, Ken Maeda, Yasuhiro Yoshikawa","doi":"10.1007/s11626-024-00933-z","DOIUrl":"10.1007/s11626-024-00933-z","url":null,"abstract":"<p><p>Cervus nippon (sika deer) are widely distributed throughout eastern Asia. Deer possess a variety of antibodies against several zoonotic pathogens, indicating that they act as reservoir of zoonoses. In this study, we reported the characterization of cultured cells derived from sika deer and evaluated their susceptibility to arthropod-borne viruses to clarify their usefulness in virological studies. Cells derived from testicular tissue in Dulbecco's modified eagle medium with 16% fetal bovine serum started growing as primary cultured cells. The diploid cells consisted of 68 chromosomes, consistent with those of Japanese sika deer previously reported. The phylogenetic analysis showed the cells formed a robust clade with Japanese population of C. nippon, indicating that the cultured cells established in this study were originated from the Japanese sika deer. The cells immortalized by the simian virus 40 T-antigen were predominantly spindle-shaped cells exhibiting adhesive properties, and cultivated at 37°C and 5% CO<sub>2</sub>, which are common culture conditions for many mammalian cell lines. Western blotting analysis indicated that the cultured cells were multiple types of cells that coexist, including at least epithelial, fibroblast, and also Leydig cells. We confirmed that the cells have susceptibility to several arboviruses distributed in Japan: Getah virus, Japanese encephalitis virus, Oz virus, and severe fever with thrombocytopenia syndrome virus, but not to Tarumiz tick virus. From these results, the cells contribute to clarify the role of sika deer as a reservoir of zoonoses in nature and deer-associated experimental research at the cellular and molecular levels.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"935-948"},"PeriodicalIF":1.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proinflammatory cytokines suppress stemness-related properties and expression of tight junction in canine intestinal organoids.","authors":"Meg Nakazawa, Itsuma Nagao, Yoko M Ambrosini","doi":"10.1007/s11626-024-00936-w","DOIUrl":"10.1007/s11626-024-00936-w","url":null,"abstract":"<p><p>Recent advancements in canine intestinal organoid research have paved the way for the development of enhanced in vitro models, crucial for exploring intestinal physiology and diseases. Despite these strides, there is a notable gap in creating specific in vitro models that focus on intestinal inflammation. Our study aims to bridge this gap by investigating the impact of proinflammatory cytokines on canine intestinal epithelial cells (IECs) within the context of organoid models. Canine intestinal organoids were treated with proinflammatory cytokines TNF-α, IFN-γ, and IL-1β. The expression of stem cell markers Lgr5, Sox9, Hopx, and Olfm4 was evaluated through RT-qPCR, while membrane integrity was assessed using immunofluorescence staining for tight junction proteins and transport assays for permeability. IFN-γ significantly decreased Lgr5 expression, a key intestinal stem cell marker, at both 24 and 48 h post-treatment (p=0.030 and p=0.002, respectively). Conversely, TNF-α increased Olfm4 expression during the same intervals (p=0.018 and p=0.011, respectively). A reduction in EdU-positive cells, indicative of decreased cell proliferation, was observed following IFN-γ treatment. Additionally, a decrease in tight junction proteins E-cadherin and ZO-1 (p<0.001 and p=0.003, respectively) and increased permeability in IECs (p=0.012) were noted, particularly following treatment with IFN-γ. The study highlights the profound impact of proinflammatory cytokines on canine IECs, influencing both stem cell dynamics and membrane integrity. These insights shed light on the intricate cellular processes underlying inflammation in the gut and open avenues for more in-depth research into the long-term effects of inflammation on intestinal health.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"916-925"},"PeriodicalIF":1.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adauto Lima Cardoso, Jordana Inácio Nascimento Oliveira, João Pedro Silva Climaco, Natália Bortholazzi Venturelli, Camila do Nascimento Moreira, Cesar Martins
{"title":"Conditions for establishing fin primary cell cultures in a wide range of ray-finned fishes.","authors":"Adauto Lima Cardoso, Jordana Inácio Nascimento Oliveira, João Pedro Silva Climaco, Natália Bortholazzi Venturelli, Camila do Nascimento Moreira, Cesar Martins","doi":"10.1007/s11626-024-00963-7","DOIUrl":"https://doi.org/10.1007/s11626-024-00963-7","url":null,"abstract":"<p><p>Ray-finned fishes (Actinopterygii) represent the most diverse vertebrate lineage that show extensive variations in physiology, ways of life, and adaptations to marine and freshwater environments, and several species have been established as biological research models. The in vitro culture of cells is fundamental for several fields of biological research, being an alternative for studies that use animals. Hundreds of fish cell lines have been established using specific methods for each cell type and species. Here is described a protocol which can be used commonly for obtaining cell cultures from the caudal fin of a wide range of ray-finned fishes including marine and freshwater species. Conditions for sample collection, microbial disinfection, tissue dissociation, plating and incubation, cryopreservation and thawing, and karyotyping are described in detail. Primary cell cultures were developed for 20 species grouped into 12 different orders. Eleven of these species have been cultivated in vitro for the first time. In the beginning, the fish cell cultures showed different capacities of proliferation among them; however throughout the passages, most cultures began to have a similar proliferation rate. Throughout the passages, it was noticed that cells similar to fibroblasts began to predominate. The great proliferative ability of these cultures reveals their potential to become cell lines. The culture of A. mexicanus, for example, has been proliferating for months and is already in its 65th passage. Moreover, these cell cultures showed conserved diploid chromosome numbers in comparison with in vivo descriptions which suggest these cultures have stable karyotypes. Therefore, these cultures have potential to be used in several fields, such as toxicology, cytogenetics, genomics, pathology, immunology, cellular agriculture, and conservation, and this method has the potential to be expanded to species not yet tested, as well as to other organs.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth Urban-Gedamke, Megan Conkling, Cynthia Goodman, Xu Han, Shirley A Pomponi
{"title":"Novel use of a - 20°C cryoprotectant yields high viability and improved aggregation of marine sponge cells.","authors":"Elizabeth Urban-Gedamke, Megan Conkling, Cynthia Goodman, Xu Han, Shirley A Pomponi","doi":"10.1007/s11626-024-00959-3","DOIUrl":"https://doi.org/10.1007/s11626-024-00959-3","url":null,"abstract":"","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}