Wound healing properties of Biginelli scaffolds in Tilapia gill cell line: an in vitro analysis and computational approaches.

IF 1.7 4区 生物学 Q4 CELL BIOLOGY
Noorudeen Paringamalai, Syed Tajudeen Syed Ameen, Abdul Matheen Ibrahim, Gani Taju, Seepoo Abdul Majeed, Azeez Sait Sahul Hameed, Sivaraj Mithra, Predhanekar Mohamed Imran, Attar Kubaib
{"title":"Wound healing properties of Biginelli scaffolds in Tilapia gill cell line: an in vitro analysis and computational approaches.","authors":"Noorudeen Paringamalai, Syed Tajudeen Syed Ameen, Abdul Matheen Ibrahim, Gani Taju, Seepoo Abdul Majeed, Azeez Sait Sahul Hameed, Sivaraj Mithra, Predhanekar Mohamed Imran, Attar Kubaib","doi":"10.1007/s11626-025-01062-x","DOIUrl":null,"url":null,"abstract":"<p><p>The skin is a vital organ that regulates the temperature, nutrient absorption, and perception of sensations. Wound healing is a complex biological process in multicellular systems that consists of four key phases: hemostasis, inflammation, proliferation, and remodeling. This study develops a new approach for synthesizing dihydropyrimidinones (DHPM) named Biginelli scaffolds via a simple, rapid, eco-friendly, and cost-effective solvent-free Biginelli reaction for wound healing activities. The synthesis involved a one-pot three-component coupling reaction of β-ketoester derivatives, anisaldehyde, and simple urea in a domestic microwave oven. The synthesized (B1-B4) scaffolds were characterized using melting point, UV-Vis, FT-IR, HRMS, 2D-NMR (NOESY), and proton/carbon NMR spectroscopies. The molecular docking results showed that the synthetic scaffolds (B1-B4) had strong binding abilities, with B3 and B4 having the best interactions in the group, similar to the control compound (curcumin). It exhibited less cytotoxic effects up to 80 µg/mL in Tilapia gill (TG) cells in the MTT assay. The synthesized scaffolds (60 µg/mL) enhanced TG cell growth and had potential applications in wound healing. Biginelli (B1-B4) scaffolds showed good antioxidant properties in the DPPH assay. RT-qPCR analysis indicated that TG cells exposed to different (B1-B4) scaffold concentrations had significantly increased VEGF gene expression. The scaffolds showed no toxic effects on adsorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, and the structure was optimized using the DFT-B3LYP-6311G-(d,p) hybrid basis set. This method has wide applications in future research and provides insights into tissue engineering and biomedical applications.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01062-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The skin is a vital organ that regulates the temperature, nutrient absorption, and perception of sensations. Wound healing is a complex biological process in multicellular systems that consists of four key phases: hemostasis, inflammation, proliferation, and remodeling. This study develops a new approach for synthesizing dihydropyrimidinones (DHPM) named Biginelli scaffolds via a simple, rapid, eco-friendly, and cost-effective solvent-free Biginelli reaction for wound healing activities. The synthesis involved a one-pot three-component coupling reaction of β-ketoester derivatives, anisaldehyde, and simple urea in a domestic microwave oven. The synthesized (B1-B4) scaffolds were characterized using melting point, UV-Vis, FT-IR, HRMS, 2D-NMR (NOESY), and proton/carbon NMR spectroscopies. The molecular docking results showed that the synthetic scaffolds (B1-B4) had strong binding abilities, with B3 and B4 having the best interactions in the group, similar to the control compound (curcumin). It exhibited less cytotoxic effects up to 80 µg/mL in Tilapia gill (TG) cells in the MTT assay. The synthesized scaffolds (60 µg/mL) enhanced TG cell growth and had potential applications in wound healing. Biginelli (B1-B4) scaffolds showed good antioxidant properties in the DPPH assay. RT-qPCR analysis indicated that TG cells exposed to different (B1-B4) scaffold concentrations had significantly increased VEGF gene expression. The scaffolds showed no toxic effects on adsorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, and the structure was optimized using the DFT-B3LYP-6311G-(d,p) hybrid basis set. This method has wide applications in future research and provides insights into tissue engineering and biomedical applications.

罗非鱼鳃细胞系Biginelli支架的伤口愈合性能:体外分析和计算方法。
皮肤是调节温度、营养吸收和感知感觉的重要器官。在多细胞系统中,伤口愈合是一个复杂的生物过程,包括四个关键阶段:止血、炎症、增殖和重塑。本研究通过简单、快速、环保、低成本的无溶剂Biginelli反应合成了具有伤口愈合活性的双氢嘧啶(DHPM) Biginelli支架。在家用微波炉中对β-酮酯衍生物、茴香醛和简单尿素进行了一锅三组分偶联反应。采用熔点、UV-Vis、FT-IR、HRMS、2D-NMR (noesi)和质子/碳核磁共振光谱对合成的(B1-B4)支架进行了表征。分子对接结果表明,合成的支架(B1-B4)具有较强的结合能力,其中B3和B4在组内相互作用最好,与对照化合物(姜黄素)相似。在MTT试验中,它在罗非鱼鳃(TG)细胞中显示出较小的细胞毒性作用,高达80µg/mL。合成的支架(60µg/mL)促进TG细胞生长,在伤口愈合中具有潜在的应用前景。在DPPH实验中,Biginelli (B1-B4)支架显示出良好的抗氧化性能。RT-qPCR分析显示,暴露于不同(B1-B4)支架浓度的TG细胞VEGF基因表达显著升高。该支架在吸附、分布、代谢、排泄和毒性(ADMET)分析中均无毒性作用,并采用DFT-B3LYP-6311G-(d,p)杂交基集对其结构进行优化。该方法在未来的研究中有广泛的应用,并为组织工程和生物医学应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信