Xiaojun Zhang, Fang Wang, Yuna Dai, Zhaoyu Gao, Jianchao He
{"title":"α-Cyperone affects the development and chemosensitivity of breast cancer by modulating TRIM24.","authors":"Xiaojun Zhang, Fang Wang, Yuna Dai, Zhaoyu Gao, Jianchao He","doi":"10.1007/s11626-025-01067-6","DOIUrl":"10.1007/s11626-025-01067-6","url":null,"abstract":"<p><p>Breast cancer (BC) refers to a malignant neoplasm that takes place in the epithelial tissue of the breast. α-Cyperone (α-CYP) is one of the principal active components of Cyperus rotundus. However, research on the role of α-CYP in the development of BC is still lacking. This study investigates the effect and underlying mechanism of α-CYP in the progression of BC. Our findings revealed that both low-dose and high-dose α-CYP inhibited the colony formation ability of MCF-7 and BT474 cells, accompanied by the decrease in Ki67 expression and the obstruction of the cell cycle. Moreover, α-CYP treatment increased the activity of caspase-3, which leads to an increase in apoptosis. Moreover, the combination of α-CYP and cisplatin (DDP) remarkably suppressed cell viability and further facilitated apoptosis, indicating that α-CYP could enhance the sensitivity of chemotherapeutic agents in BC cells. Further, α-CYP treatment decreased TRIM24 expression through the ubiquitin-proteasome pathway. Notably, α-CYP counteracted the robust proliferation of BC cells triggered by TRIM24 overexpression. Taken together, this study confirmed that α-CYP is an effective anticancer component for BC treatment. α-CYP inhibits proliferation and induces apoptosis of BC cells via the modulation of TRIM24.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"816-824"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144600273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuelian Chen, Fan Zhang, Zhiguo Zhou, Dixuan Jiang, Long Wen
{"title":"Xuebijing inhibits alveolar macrophage M1 polarization by regulating ROS-mediated NLRP3 inflammasome signaling.","authors":"Xuelian Chen, Fan Zhang, Zhiguo Zhou, Dixuan Jiang, Long Wen","doi":"10.1007/s11626-025-01063-w","DOIUrl":"10.1007/s11626-025-01063-w","url":null,"abstract":"<p><strong>Background: </strong>Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are devastating acute pulmonary conditions with high mortality rates and limited effective treatment options. This study aimed to investigate the therapeutic potential of XBJ on ALI and its potential mechanism.</p><p><strong>Methods: </strong>We developed an in vitro model of lipopolysaccharide (LPS)-induced ALI and evaluated the effects of XBJ pre-treatment on oxidative stress, inflammatory responses, and the polarization state of alveolar macrophages.</p><p><strong>Results: </strong>LPS exposure significantly elevated the levels of reactive oxygen species (ROS) and oxidants 8-hydroxy-2'-deoxyguanosine (8-OHDG) and malondialdehyde (MDA) in alveolar macrophages. It also elevated the concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-23. XBJ and quercetin significantly mitigated the increase in these indicators. Moreover, XBJ and quercetin both downregulated the expression of key proteins in the NLRP3 inflammasome pathway in the ALI model. Similar to the ROS inhibitor N-acetylcysteine (NAC), XBJ and quercetin significantly decreased M1 polarization markers like CD86 and inducible nitric oxide synthase (iNOS), while increasing M2 polarization markers such as CD206 and arginase-1 (Arg-1). Notably, the overexpression of NLRP3 was able to reverse the inhibitory effect of XBJ on macrophage M1 polarization.</p><p><strong>Conclusion: </strong>XBJ inhibits the M1 polarization of alveolar macrophages by targeting ROS-mediated NLRP3 inflammasome signaling, thereby reducing the inflammatory response. These results indicate that XBJ may offer a novel therapeutic strategy for ALI/ARDS by modulating macrophage polarization and inflammation.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"789-800"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144560036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"5-Methoxytryptophan improves cerebrovascular injury induced by chronic kidney disease through NF-κB pathway.","authors":"Xiaoyan Zhou, Yan Sun, Guoshuai Yang","doi":"10.1007/s11626-025-01057-8","DOIUrl":"10.1007/s11626-025-01057-8","url":null,"abstract":"<p><p>5-Methoxytryptophan (5-MTP), a candidate biomarker for chronic kidney disease (CKD), has an undefined role in cerebrovascular pathophysiology. To investigate this, we employed a folic acid (FA)-induced CKD to simulate cerebrovascular complications in vivo. Additionally, in vitro models of cerebral ischemia and cerebrovascular endothelial cell injury were established. 5-MTP was administered to rats and cells, along with nuclear factor-κB (NF-κB) expression. The pathological characteristics of kidney and brain tissue were observed by histological staining. Cell proliferation was assessed using the Cell Counting Kit 8, while tube formation and migration were examined using tube formation and wound healing assays. Cell apoptosis was detected using both TdT-mediated dUTP-biotin nick end labeling and flow cytometry. Levels of renal injury markers, blood biomarkers of cerebrovascular disease, and inflammatory cytokines were measured using biochemical assays. Quantitative real-time PCR and Western blot were used to detect the mRNA and protein expression, respectively. Key findings revealed that FA successfully induced CKD in rats, which subsequently exacerbated cerebrovascular dysfunction. 5-MTP reduced the levels of proteinuria, N-acetyl-beta-D-glucosaminidase, nephrin, endothelin-1, von Willebrand factor, and thrombomodulin; improved the degree of renal fibrosis and structural damage to the brain tissue; and inhibited cell apoptosis in rats. In vitro, 5-MTP promoted cell proliferation, tube formation, migration, and the upregulation of B-cell lymphoma-2 and caspase-3 expression. This treatment also led to an increase in interleukin (IL)-10 levels while suppressing cell apoptosis, Bcl-2-associated X protein (Bax), and cleaved caspase-3 expression. Furthermore, it reduced the IL-6 and tumor necrosis factor-alpha levels. NF-κB overexpression reversed the effects of 5-MTP in vitro and in vivo. Our results demonstrate that 5-MTP ameliorated CKD-induced cerebrovascular injury through the NF-κB pathway, indicating its potential as an innovative and efficacious therapeutic target for CKD-induced cerebrovascular dysfunction.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"774-788"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MiR-21-5p promotes RPE cell necroptosis by targeting Peli1 in a rat model of AMD.","authors":"Yishun Shu, Ziwen Li, Tianyi Zong, Tong Mu, Haoyuan Zhou, Qian Yang, Meili Wu, Yanqiu Liu, Tianhua Xie, Chengye Tan, Miao Zhuang, Xiaolu Wang, Yong Yao","doi":"10.1007/s11626-025-01064-9","DOIUrl":"10.1007/s11626-025-01064-9","url":null,"abstract":"<p><p>Nonexudative age-related macular degeneration (dry AMD) is characterized by the progressive degeneration of retinal pigment epithelial (RPE) cells and photoreceptors, resulting in central vision loss. The disease is primarily marked by the accumulation of drusen and RPE atrophy. Given the emerging role of miR-21-5p in various ocular diseases, including diabetic retinopathy, glaucoma, pterygium, and choroidal neovascularization, we hypothesized that miR-21-5p may also impact RPE cell integrity in AMD. To test this hypothesis, we employed a rat model of dry AMD induced by sodium iodate (NaIO3) and evaluated the effects of miR-21-5p modulation via intravitreal injections of miR-21-5p agomir or antagomir. Comprehensive assessments were performed using optical coherence tomography (OCT), fundus imaging, histopathology, and biochemical markers. Our results demonstrated an upregulation of miR-21-5p in response to NaIO3 treatment. Administration of miR-21-5p agomir exacerbated RPE damage, while pretreatment with miR-21-5p antagomir mitigated these detrimental effects. Furthermore, in vitro experiments revealed that miR-21-5p regulates necroptosis in CoCl2-treated RPE cells by targeting Pellino1 (Peli1) via its 3' untranslated region, thereby inhibiting Peli1 expression. Overexpression of Peli1 effectively counteracted the necroptotic effects induced by CoCl2. These findings highlight the potential of miR-21-5p as a therapeutic target in dry AMD, expanding our understanding of miRNA-mediated regulation of RPE cells and suggesting new avenues for treatment strategies.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"801-815"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144527752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyto-genotoxic assessment of bisphenol P through expression of DNA damage/repair genes in MDBK cell line.","authors":"Muhammad Muddassir Ali, Samra Afzal, Maryam Javed, Imran Rashid, Furqan Awan, Asad Ullah, Tanveer Majeed, Hadeer Darwish, Ahmed Noureldeen, Jawaher Albaqami, Khalid Mehmood","doi":"10.1007/s11626-025-01068-5","DOIUrl":"10.1007/s11626-025-01068-5","url":null,"abstract":"<p><p>Bisphenol P (BPP) is a recognized endocrine disruptor with detrimental effects on human health. This study aimed to evaluate BPP's cytotoxic and genotoxic effects on Madin-Darby bovine kidney (MDBK) cells by examining changes in gene expression, genotoxicity, and cell survival. Various assays were employed, including the MTT assay, comet assay, micronucleus assay, and real-time PCR for gene expression analysis. Among the series of concentrations (0.5 µM, 1 µM, 2 µM, 4 µM, 8 µM, 16 µM, 32 µM, 64 µM, 128 µM, and 256 µM), the treatment with 32 µM BPP (LC<sub>50</sub>) resulted in 50% cell viability after 24 h via MTT assay. The comet assay revealed a significant increase in comet tail length in BPP-treated groups compared to controls, indicating DNA with the highest damage at the 3xLC<sub>50/2</sub> dose concentration of BPP. The frequency of micronuclei (MNi) was higher than binuclei. A significantly higher level of cytokinesis-block proliferation index (CBPI) was also observed at higher doses than in the negative control group. Gene expression analysis indicated increased levels of OGG1 and HPRT1 in BPP-treated cells compared to untreated controls, with a dose-dependent elevation in OGG1 expression involved in DNA damage response. This study concluded that BPP exhibits both cytotoxic and genotoxic effects on MDBK cells. Expression of DNA repair genes (OGG1, HPRT1) served as biomarkers for genotoxicity. Furthermore, it is recommended that additional studies on BPP's molecular toxicity and its cross-species effects should be explored further to combat its harmful effects.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"763-773"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144608244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lactiplantibacillus plantarum promotes lactoferrin synthesis and secretion in bovine mammary epithelial cells through STAT3 and AP-1 transcription factor pathways.","authors":"Jinyu Zhou, Shuai Lian, Zijian Geng, Yuejie Yang, Rui Wu, Jianfa Wang","doi":"10.1007/s11626-025-01055-w","DOIUrl":"10.1007/s11626-025-01055-w","url":null,"abstract":"<p><p>Probiotics can support the immune function of dairy cows and contribute to the synthesis of milk components in mammary gland tissue. Bovine lactoferrin (bLF) possesses immune-regulating and nutritional properties; however, the impact of probiotics on bLF remains unclear. This study aimed to investigate whether probiotics can enhance the synthesis and secretion of bLF in the mammary gland, with a particular focus on the specific mechanisms by which Lactiplantibacillus plantarum (L. plantarum) regulates bLF. Primary bovine mammary epithelial cells (BMECs) were cultured in six-well plates and treated with various types of probiotics. The expression of bLF was evaluated using quantitative real-time PCR (qRT-PCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). The expression of transcription factors associated with the bLF promoter region, specifically, was analyzed through qRT-PCR and Western blot. Lacticaseibacillus rhamnosus (L. rhamnosus), Streptococcus thermophilus (S. thermophilus), Bifidobacterium (Bifido.), and L. plantarum upregulated bLF gene and protein expression to varying extents, with L. plantarum exhibiting the most pronounced effect. Furthermore, L. plantarum was found to regulate the expression of phosphorylated STAT3 and AP-1. These findings indicate that probiotics can influence the expression of bLF in mammary gland tissue. Additionally, L. plantarum modulates the production of bLF via the STAT3 and AP-1 transcription factor pathways.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"886-897"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144834928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yujun Tang, Jie Luo, Bin Jiang, Jian Deng, Jiehua Li, Liuqing Qin
{"title":"Overexpression of MEOX2 inhibits breast cancer cell metastasis by targeting oxidative stress-induced RGS5.","authors":"Yujun Tang, Jie Luo, Bin Jiang, Jian Deng, Jiehua Li, Liuqing Qin","doi":"10.1007/s11626-025-01066-7","DOIUrl":"10.1007/s11626-025-01066-7","url":null,"abstract":"<p><p>This study aimed to investigate the role of mesenchymal homeobox 2 (MEOX2) on breast cancer cell metastasis and its underlying mechanism. Overexpression of MEOX2 in human lymphatic endothelial cell (HLEC) lines was established to assess the adhesion and transendothelial migration of MCF7 and MDA-MB-231 cells to the HLEC cells. After being treated with the oxidative stress inducer H<sub>2</sub>O<sub>2</sub> and the antioxidant N-acetylcysteine (NAC), cell viability, reactive oxygen species (ROS) levels, adhesion, and transendothelial migration of MCF7 and MDA-MB-231 cells to HLEC cells were detected. Tumor volume changes were observed in the xenograft model. The expression of C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 7 (CCR7), MEOX2, and G protein signal transduction regulator 5 (RGS5) in tumor tissues and ROS levels were detected. MEOX2 was lowly expressed in breast cancer tissues. Upregulated MEOX2 inhibited the proliferation of lymphatic endothelial cells and the adhesion and transendothelial migration of MCF7 and MDA-MB-231 cells to HLEC cells. After MCF7 and MDA-MB-231 cells were treated with oxidative stress inducer H<sub>2</sub>O<sub>2</sub>, ROS levels increased, and cell viability and MEOX2 expression decreased. After NAC or overexpressed MEOX2 treatment, MEOX2 expression increased, ROS and RGS5 levels, adhesion, and transendothelial migration ability decreased in HLEC cells. Overexpression of MEOX2 resulted in smaller tumor volume, lower ROS levels, and lower CXCR4 and CCR7 expression levels. MEOX2 and RGS5 are pivotal in regulating breast cancer metastasis, offering valuable insights into potential therapeutic strategies for breast cancer metastasis.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"871-885"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144553401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ginsenoside Rg1 mitigates myocardial ischemia/reperfusion injury by inhibiting NLRP3-mediated pyroptosis.","authors":"Qian-Hui Li, Jun-Xian Shen, Shuai-Lei Xu, Kang-Zhen Zhang","doi":"10.1007/s11626-025-01070-x","DOIUrl":"10.1007/s11626-025-01070-x","url":null,"abstract":"<p><p>Nucleotide-binding oligomerisation domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation and pyroptosis exert the pivotal influence on myocardial ischemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1) reportedly has multiple pharmacological actions. However, the cardioprotective potential and underlying mechanism of Rg1 in treating myocardial I/R injury in the context of pyroptosis have not been comprehensively investigated. A rat model of myocardial I/R injury was established by blocking the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min. The prevention of Rg1 against I/R-caused damage and the potential mechanisms were explored. In our study, NLRP3 overexpression abolished the cardioprotective effect of Rg1, and Rg1 treatment improved myocardial function and changes in histological morphology and suppressed I/R-induced cytotoxicity as well as cardiomyocyte pyroptosis by reducing the pyroptosis-related proteins. These results indicate that Rg1 mitigated I/R-induced myocardial damage and pyroptosis by dramatically suppressing NLRP3 inflammasome activation and may provide new insights for the treatment of ischemic heart disease.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"825-837"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144583816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Embryologist versus AI in embryo selection: agreement and impact on pregnancy rates.","authors":"Yael Harir, Rona Halevy Amiran, Yuval Or","doi":"10.1007/s11626-025-01099-y","DOIUrl":"https://doi.org/10.1007/s11626-025-01099-y","url":null,"abstract":"<p><p>Can artificial intelligence match or even outperform experienced embryologists in embryo selection for IVF transfer? To explore this question, we conducted a retrospective cohort study of 82 IVF cycles comparing embryo selections by an embryologist and AI (iDAscore), analyzing pregnancy outcomes. Embryologist and AI agreed in 64.6% of cases. Pregnancy rates were 45.2% in concordant vs. 44.8% in discordant selections (p > 0.05). AI-based embryo selection aligns closely with human judgment and may aid IVF decision-making. Larger studies are needed to confirm clinical utility.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144764863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Wang, Meng Zhang, Shaowei Wang, Zhen Xing, Tong Jia, Xiaojia Sun, Hui Liu, Jie Yao, Yanlin Chen
{"title":"Dexmedetomidine preserves neuronal function by promoting mitochondrial biogenesis through the AMPK/PGC-1α pathway.","authors":"Li Wang, Meng Zhang, Shaowei Wang, Zhen Xing, Tong Jia, Xiaojia Sun, Hui Liu, Jie Yao, Yanlin Chen","doi":"10.1007/s11626-025-01059-6","DOIUrl":"10.1007/s11626-025-01059-6","url":null,"abstract":"<p><p>Mitochondrial dysfunction, often linked to the deregulation of mitochondrial biogenesis, plays a significant role in the progression of neurological diseases. Dexmedetomidine (Dex), a selective alpha-2 adrenergic agonist utilized for anesthesia and sedation, has a largely unexplored impact on mitochondrial function. In this study, cells were treated with Dex at concentrations of 10 μg/mL and 20 μg/mL. Mitochondrial function was assessed by measuring mitochondrial membrane potential, adenosine triphosphate (ATP) production, and oxygen consumption rates. The expression levels of key mitochondrial genes and proteins were analyzed using quantitative polymerase chain reaction (qPCR) and Western blot. To investigate the role of AMP-activated protein kinase α (AMPK), cells were co-treated with the AMPK inhibitor Compound C. Our results demonstrate that treating cells with Dex significantly enhances mitochondrial membrane potential, ATP production, and oxygen consumption rates. Additionally, Dex increases the expression of vital mitochondrial genes, including Mitochondrially Encoded NADH: Ubiquinone Oxidoreductase Core Subunit 6 (mtND6), Mitochondrially Encoded Cytochrome c Oxidase II (mtCO2), and Mitochondrially Encoded ATP Synthase 6 (mtATP6), while also improving the mtDNA-to-nDNA ratio. The treatment raises Messenger Ribonucleic Acid (mRNA) and protein levels of essential mitochondrial biogenesis regulators such as Nuclear Respiratory Factor 1(Nrf1), Mitochondrial Transcription Factor A (TFAM), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), and phosphorylated AMP-Activated Protein Kinase α (p-AMPKα). However, when cells are co-treated with the AMPK inhibitor compound C, these positive effects are lost, highlighting the necessity of AMPK activation for the mitochondrial enhancements induced by Dex. These findings suggest a promising therapeutic potential for Dex in supporting neuronal function through mitochondrial pathways.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"753-762"},"PeriodicalIF":1.7,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144583815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}