{"title":"Resolvin D1 suppresses inflammation in human fibroblast-like synoviocytes via the p-38, NF-κB, and AKT signaling pathways.","authors":"Makoto Yanoshita, Naoto Hirose, Sayuri Nishiyama, Eri Tsuboi, Naoki Kubo, Daiki Kita, Kotaro Tanimoto","doi":"10.1007/s11626-024-01008-9","DOIUrl":"10.1007/s11626-024-01008-9","url":null,"abstract":"<p><p>Synovitis represents the initial pathological change in osteoarthritis and contributes to its progression. Resolvin D1 (RV-D1) is a novel and endogenous docosahexaenoic acid-derived lipid mediator, which regulates the duration and magnitude of inflammation by downregulating pro-inflammatory genes and mediators. However, the effects of RV-D1 on synovitis remain unknown. The aim of the present study was to investigate the anti-inflammatory effects of RV-D1 in human fibroblast-like synoviocytes (HFLSs) and the underlying mechanisms. The expression of the HFLS formyl peptide receptor 2 (ALX/FPR) was examined via immunocytochemical analysis. HFLSs were treated with 1 ng/mL recombinant human interleukin-1β (IL-1β) and RV-D1. The gene expression of interleukin-1β (IL1B), matrix metalloproteinase 3 (MMP3), and MMP13 was examined using real-time reverse transcription-polymerase chain reaction after treatment with IL-1β and RV-D1. The effect of RV-D1 on apoptosis was examined based on fluorescence intensity. Phosphorylation of p-38, extracellular signal-regulated kinase, c-Jun N-terminal kinase, nuclear factor kappa B (NF-κB), and AKT was analyzed via western blotting. ALX/FPR staining was observed on the cell surface. RV-D1 significantly suppressed the IL-1β-induced increase in gene and protein expression of IL-1β, MMP-3, and MMP-13. Pretreatment with 100 nM RV-D1 significantly increased the fluorescence intensity compared to that in the non-treatment group. Furthermore, pretreatment with RV-D1 significantly suppressed the phosphorylation of p-38, NF-κB, and AKT. Whereas WRW4, an antagonist of ALX/ FPR2, treatment weakened the effect of RV-D1, resulting in p-38, NF-κB, and AKT phosphorylation and the protein expression of MMP-13 at levels comparable to those in the IL-1β without RV-D1. In conclusion, RV-D1 suppressed IL-1β and MMP expression by inhibiting the phosphorylation of p-38, NF-κB, and AKT in inflammation in HFLSs. RV-D1 can be used to develop treatments for osteoarthritis and other inflammatory disorders.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"331-339"},"PeriodicalIF":1.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"5-Azacytidine inhibits endoplasmic reticulum stress and apoptosis of nucleus pulposus cells by preserving PPARγ via promoter demethylation.","authors":"Peng Cheng, Huan Li, Hai-Wei Chen, Zhi-Qiang Wang, Pei-Wu Li, Hai-Hong Zhang","doi":"10.1007/s11626-025-01021-6","DOIUrl":"10.1007/s11626-025-01021-6","url":null,"abstract":"<p><p>Low back pain (LBP) is a common symptom of intervertebral disc degeneration (IDD). However, the pathogenesis of IDD is not well understood. Several studies have shown that patients with IDD experience aberrant changes in DNA methylation. 5-Azacytidine (5Aza) is a nucleoside-based DNA methyltransferase inhibitor that inhibits DNA methylation. Therefore, this study investigated whether 5Aza can improve the apoptosis of nucleus pulposus (NP) cells and ER stress (ERS) induced by il-1β by inhibiting PPARγ methylation and its potential pathogenesis. NP cell viability was detected using Cell Counting Kit-8 (CCK-8). Methylation-specific PCR (MSP) was used to evaluate the DNA methylation level. TUNEL was used to evaluate the apoptosis of NP cells. Western blot determined the expression levels of DNMT1, DNMT3a, PPARγ proteins, and ERS-related indexes (C/EBP homology protein (CHOP), GRP78, ATF-6) and apoptosis-related indexes (Bcl-2, Bax, Caspase-3) protein expression levels. 5Aza can inhibit the expression of DNMT1 and DNMT3a and promote PPARγ by modifying the methylation of PPARγ promoter. Western blot (Bcl-2, Bax, Caspase-3, CHOP, GRP78, ATF-6), TUNEL, and CHOP immunofluorescence results showed that 5Aza attenuated IL-1β-induced apoptosis and ERS of NP cells. When pretreated with PPARγ inhibitor (T0070907), the protective effect of 5Aza on IL-1β-induced apoptosis and ERS in NP cells is weakened, suggesting that 5Aza inhibits IL-1β-induced NP cell apoptosis and ERS by promoting the expression of PPARγ. 5Aza preserves PPARγ by inhibiting the expression of DNMT1/DNMT3a, which can significantly reduce IL-1β damage in NP cells. Our findings suggest that preserving PPARγ through DNA demethylation may be an attractive strategy for preventing or treating IDD.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"288-297"},"PeriodicalIF":1.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ubiquitin-specific protease 7 exacerbates acute pancreatitis progression by enhancing ATF4-mediated autophagy.","authors":"Feng Peng, Xiaofeng Deng","doi":"10.1007/s11626-024-01009-8","DOIUrl":"10.1007/s11626-024-01009-8","url":null,"abstract":"<p><p>Acute pancreatitis (AP) is a serious inflammatory disease with high incidence rate and mortality. It was confirmed that overactivation of autophagy in acinar cells can increase the risk of AP. Nevertheless, the regulatory mechanism of autophagy in AP is unclear. The role of ubiquitin-specific peptidase 7 (USP7) in controlling autophagy during AP development was examined in this study. AR42J cells were subjected to caerulein to establish a cell model of AP. ELISA utilized to assess IL-6, IL-1β, and TNF-α secretion levels. Cell viability and death were detected using CCK8 assay and flow cytometry, respectively. The interaction between USP7 and ATF4 was analyzed by Co-IP assay. USP7 and ATF4 were abnormally overexpressed in AP patients and cellular models. Loss of function of USP7 increased cell viability, but alleviated cell death and secretions of inflammatory cytokines including IL-6, IL-1β, and TNF-α in AP cellular models. Importantly, autophagy level was activated in AP cells, and could be repressed after USP7 knockdown, and rapamycin treatment greatly diminished the beneficial functions mediated by USP7 downregulation in AP cells. Mechanically, ATF4, an activator of stress autophagy in AP, was proved to be a deubiquitination modification target downstream of USP7, and its protein stability was weakened after USP7 reduction. ATF4 upregulation abolished the protective effect of USP7 silencing on caerulein-induced autophagy, inflammation, and cell injury in AR42J cells. USP7 knockdown reduced inflammation and cell injury during AP progression by inhibiting ATF4-mediated autophagy activation.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"320-330"},"PeriodicalIF":1.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis.","authors":"Ya-Jie Zhang, Huan He, Guligena Sawuer, Xue-Kuan Ma, Zulihumaer Ainiwaer, Dan-Dan Wu, Xia-Xia Zhang, Dong-Qing An","doi":"10.1007/s11626-024-01004-z","DOIUrl":"10.1007/s11626-024-01004-z","url":null,"abstract":"<p><p>The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined. In vitro, human THP-1 cells were induced into macrophages and then transformed into foam cells using ox-LDL induction. Different intervention groups were established. Total cellular cholesterol (TC), free cholesterol (FC), and autophagy levels were assessed, while the morphology and distribution of lipid droplets and autophagosomes in cells were observed using transmission electron microscopy. Western blot analysis was performed to evaluate the expression levels of PI3K, Akt, mTOR, TFEB, LC3II/I, ULK1, ABCA1, and p62. TXD effectively lowers blood lipid levels in ApoE-/- atherosclerotic mice, enhances lipophagy, and reduces lipid accumulation in foam cells and arterial lipid plaques. It achieves this by suppressing the expression of p85, Akt, and mTOR, while activating downstream autophagy signals such as TFEB, LC3II/I, and ULK1. Additionally, TXD reduces the expression of p62 and enhances the expression of the cholesterol transport molecule ABCA1. Our findings indicate that TXD activates lipophagy via the PI3K/Akt/mTOR pathway, leading to a reduction in lipid deposition within foam cells and plaques, thereby mitigating atherosclerosis.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"298-310"},"PeriodicalIF":1.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liqin Zhang, Guangping Zheng, Weicheng Zhao, Chun He, Zhongming Huang
{"title":"Maxing Yigan formula promotes cartilage regeneration by regulating chondrocyte autophagy in osteoarthritis.","authors":"Liqin Zhang, Guangping Zheng, Weicheng Zhao, Chun He, Zhongming Huang","doi":"10.1007/s11626-024-01006-x","DOIUrl":"10.1007/s11626-024-01006-x","url":null,"abstract":"<p><p>Maxing Yigan formula (MYF) is a traditional Chinese medicine (TCM) prescription used for the treatment of OA for decades in China. However, the mechanism remains unknown. In this study, we developed a MYF-incorporated collagen sponge (MYF@CS) and investigated its cartilage regeneration effect and the underlying mechanism. In vitro experiments revealed that MYF significantly promoted cell viability, proliferation, and autophagy of OA chondrocytes. Furthermore, MYF@CS significantly enhanced chondrogenesis and cartilage regeneration, as assessed by macroscopic observation, the International Cartilage Repair Society (ICRS) visual histological score, and histological examination. Our findings suggest that MYF@CS could represent a significant therapeutic strategy for the treatment of OA.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"268-274"},"PeriodicalIF":1.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengbiao Li, Yi Zhang, Tianyi Zhang, Donghui Jiang, Mi Li, Ligang Chen, Jun Jiang, Chunxiang Zhang, Qiuhong Li
{"title":"Urolithin B suppresses phenotypic switch in vascular smooth muscle cells induced by PDGF-BB via inhibiting the PI3K-AKT pathway.","authors":"Shengbiao Li, Yi Zhang, Tianyi Zhang, Donghui Jiang, Mi Li, Ligang Chen, Jun Jiang, Chunxiang Zhang, Qiuhong Li","doi":"10.1007/s11626-024-01005-y","DOIUrl":"10.1007/s11626-024-01005-y","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a prevalent cardiovascular condition, and the growth and phenotypic switch of vascular smooth muscle cells (VSMCs) play a crucial role in its development. Studies have revealed that the activation of certain transcription factors and signaling pathways can trigger these cellular changes. Consequently, targeting these pathways and pivotal molecules has emerged as a promising strategy for AS treatment. Drugs that can reverse the cellular changes in VSMCs may offer new therapeutic options for AS, marking a significant advancement. While previous research has suggested that urolithin B (Uro B) possesses anti-atherosclerotic properties, its exact mechanism remains to be fully understood, especially the effect of Uro B in VSMCs. This study discovered that Uro B can impede the proliferation and migration of VSMCs prompted by PDGF-BB, as well as their phenotypic changes, indicating that Uro B could potentially prevent AS by inhibiting the phenotypic switch of VSMCs.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"311-319"},"PeriodicalIF":1.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Yang, Rongrong Zhou, Mengjiao Zhou, Xinghuan Li
{"title":"Atorvastatin inhibits ischemia‒reperfusion-associated renal tubular cell ferroptosis by blocking the PGE2/EP4 signaling pathway.","authors":"Jing Yang, Rongrong Zhou, Mengjiao Zhou, Xinghuan Li","doi":"10.1007/s11626-025-01020-7","DOIUrl":"10.1007/s11626-025-01020-7","url":null,"abstract":"<p><p>Renal ischemia‒reperfusion (I/R) injury is the main cause of acute kidney injury, and its pathological features are manifested primarily by renal tubular epithelial cell injury. The underlying mechanism involves ferroptosis of renal tubular epithelial cells. Atorvastatin (ATO) regulates ferroptosis, and this study explored its role in I/R-induced ferroptosis of renal tubular epithelial cells. We constructed a renal I/R rat model with bilateral renal pedicles using noninvasive arterial clips and placed HK-2 cells in hypoxia/reoxygenation (H/R) incubators to construct the cell model. The damage to rat kidney tissues and HK-2 cells was assessed using enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin (H&E) staining, and flow cytometry, and the presence of associated proteins was identified through western blotting. Administering ATO markedly lessened the acute kidney damage caused by I/R, decreased the levels of blood urea nitrogen (BUN) and creatinine (CRE), and prevented apoptosis in renal tubular epithelial cells. Treatment with ATO additionally suppressed the production of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and markers linked to ferroptosis (Fe<sup>2+</sup>, ROS, MDA, ACSL4, and COX2), thereby reducing acute kidney damage associated with I/R. The expression of PGE2 in renal I/R injury is related to the degree of renal injury, and it mainly regulates ferroptosis by binding to EP4. ATO effectively inhibited the expression of PGE2 and EP4. Overall, this study revealed that ATO inhibited ferroptosis of renal tubular epithelial cells by blocking the PGE2/EP4 signaling pathway, thereby alleviating I/R-induced kidney injury.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"275-287"},"PeriodicalIF":1.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashaq Sultan Dar, Fayaz Ahmad, Feroz Ahmad Shah, Syed Shariq Nazir Qadiri, Keezia Khurshid
{"title":"Development and characterization of a cell line from the caudal fin of Schizothorax niger (Heckel, 1838) for in vitro toxicity testing.","authors":"Ashaq Sultan Dar, Fayaz Ahmad, Feroz Ahmad Shah, Syed Shariq Nazir Qadiri, Keezia Khurshid","doi":"10.1007/s11626-025-01018-1","DOIUrl":"https://doi.org/10.1007/s11626-025-01018-1","url":null,"abstract":"<p><p>Here, we successfully grew the SNCF (Schizothorax niger caudal fin) cell line from the caudal fin explants of S. niger, an important cold-water fish of the Himalayas. The cells were successfully grown up to 22 passages by planting explant tissues in DMEM medium supplemented with FBS. We observed optimal cell growth at a concentration of 18% FBS. We observed the steady generation of cells from explants from days 2 to 5 of seeding, and obtained a complete monolayer at days 7-10. We tested various temperatures, including 10 °C, 13 °C, 16 °C, 19 °C, 22 °C, 25 °C, and 28 °C, and found that 22 °C was the optimal temperature for cell growth. We examined the response to various doses of epidermal growth factor (EGF) and fibroblast growth factor (FGF) (0, 2, 4, 6, 8, and 10 ng/mL) on cell colony growth at an optimal temperature of 22 °C. We characterized the cell line using karyotyping at the 14th and 20th passages. The cell line showed epithelial cell-like growth by morphology, which was confirmed by immunotyping. We further used the cell line to study the impact of three pesticides (chlorpyrifos, dimethoate, and endosulfan), and a fungicide (mancozeb) and bacterial extracellular product (ECP). The DAPI stain assay and MTT assay confirmed the pesticides toxic effects on the cells, revealing disintegration of the cell nuclei by the formation of micronuclei and LC<sub>50</sub> concentrations. ECP treatment showed disruption of the monolayer within 0-36 hrs.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daylan T Pritchard, Caio J Nicholson de Figueiroa, Niels C Bols, Lucy E J Lee
{"title":"Response of epithelial cell lines from the rainbow trout gut and gill to ammonia.","authors":"Daylan T Pritchard, Caio J Nicholson de Figueiroa, Niels C Bols, Lucy E J Lee","doi":"10.1007/s11626-024-01010-1","DOIUrl":"https://doi.org/10.1007/s11626-024-01010-1","url":null,"abstract":"<p><p>Rainbow trout epithelial cell lines from the gill, RTgill-W1, and gut, RTgutGC, were exposed to NH<sub>4</sub>Cl at 18-21 °C in L15 (basal medium) with fetal bovine serum and were found to undergo cytoplasmic vacuolization and cell death, depending on NH<sub>4</sub>Cl concentration and exposure time. Vacuolization arose within 24 h of cultures being exposed to 10-100 mM NH<sub>4</sub>Cl, and vacuoles disappeared over 24 h after NH<sub>4</sub>Cl-exposed cultures were returned to just L15/FBS. RTgill-W1 appeared more sensitive to vacuolization, with one indicator being the maximal proportion of vacuolated cells in a culture, which approached 100% in 50 mM NH<sub>4</sub>Cl for 72 h. RTgill-W1 also were more sensitive to NH<sub>4</sub>Cl-induced cell killing. For 7-d exposures, the inhibitory concentrations (IC50s) for the 50% loss of cell viability as evaluated with Alamar Blue were 30 mM NH<sub>4</sub>Cl for RTgill-W1 and 80 mM for RTgutGC. In a wound-healing assay, RTgutGC cells in 0.1 and 1 mM NH<sub>4</sub>Cl were able to migrate and cover a 500-μm gap in 5 d, like the control, but in 50 mM NH<sub>4</sub>Cl healing was blocked. In 10 mM NH<sub>4</sub>Cl, repair was slowed but by 14 d the gap was covered with cells and many of these were vacuolated. Overall, the results provide a foundation for using these two cell lines to study the physiology and toxicology of ammonia in fish.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}