双酚P对MDBK细胞系DNA损伤/修复基因表达的细胞-基因毒性评价

IF 1.7 4区 生物学 Q4 CELL BIOLOGY
Muhammad Muddassir Ali, Samra Afzal, Maryam Javed, Imran Rashid, Furqan Awan, Asad Ullah, Tanveer Majeed, Hadeer Darwish, Ahmed Noureldeen, Jawaher Albaqami, Khalid Mehmood
{"title":"双酚P对MDBK细胞系DNA损伤/修复基因表达的细胞-基因毒性评价","authors":"Muhammad Muddassir Ali, Samra Afzal, Maryam Javed, Imran Rashid, Furqan Awan, Asad Ullah, Tanveer Majeed, Hadeer Darwish, Ahmed Noureldeen, Jawaher Albaqami, Khalid Mehmood","doi":"10.1007/s11626-025-01068-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol P (BPP) is a recognized endocrine disruptor with detrimental effects on human health. This study aimed to evaluate BPP's cytotoxic and genotoxic effects on Madin-Darby bovine kidney (MDBK) cells by examining changes in gene expression, genotoxicity, and cell survival. Various assays were employed, including the MTT assay, comet assay, micronucleus assay, and real-time PCR for gene expression analysis. Among the series of concentrations (0.5 µM, 1 µM, 2 µM, 4 µM, 8 µM, 16 µM, 32 µM, 64 µM, 128 µM, and 256 µM), the treatment with 32 µM BPP (LC<sub>50</sub>) resulted in 50% cell viability after 24 h via MTT assay. The comet assay revealed a significant increase in comet tail length in BPP-treated groups compared to controls, indicating DNA with the highest damage at the 3xLC<sub>50/2</sub> dose concentration of BPP. The frequency of micronuclei (MNi) was higher than binuclei. A significantly higher level of cytokinesis-block proliferation index (CBPI) was also observed at higher doses than in the negative control group. Gene expression analysis indicated increased levels of OGG1 and HPRT1 in BPP-treated cells compared to untreated controls, with a dose-dependent elevation in OGG1 expression involved in DNA damage response. This study concluded that BPP exhibits both cytotoxic and genotoxic effects on MDBK cells. Expression of DNA repair genes (OGG1, HPRT1) served as biomarkers for genotoxicity. Furthermore, it is recommended that additional studies on BPP's molecular toxicity and its cross-species effects should be explored further to combat its harmful effects.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyto-genotoxic assessment of bisphenol P through expression of DNA damage/repair genes in MDBK cell line.\",\"authors\":\"Muhammad Muddassir Ali, Samra Afzal, Maryam Javed, Imran Rashid, Furqan Awan, Asad Ullah, Tanveer Majeed, Hadeer Darwish, Ahmed Noureldeen, Jawaher Albaqami, Khalid Mehmood\",\"doi\":\"10.1007/s11626-025-01068-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bisphenol P (BPP) is a recognized endocrine disruptor with detrimental effects on human health. This study aimed to evaluate BPP's cytotoxic and genotoxic effects on Madin-Darby bovine kidney (MDBK) cells by examining changes in gene expression, genotoxicity, and cell survival. Various assays were employed, including the MTT assay, comet assay, micronucleus assay, and real-time PCR for gene expression analysis. Among the series of concentrations (0.5 µM, 1 µM, 2 µM, 4 µM, 8 µM, 16 µM, 32 µM, 64 µM, 128 µM, and 256 µM), the treatment with 32 µM BPP (LC<sub>50</sub>) resulted in 50% cell viability after 24 h via MTT assay. The comet assay revealed a significant increase in comet tail length in BPP-treated groups compared to controls, indicating DNA with the highest damage at the 3xLC<sub>50/2</sub> dose concentration of BPP. The frequency of micronuclei (MNi) was higher than binuclei. A significantly higher level of cytokinesis-block proliferation index (CBPI) was also observed at higher doses than in the negative control group. Gene expression analysis indicated increased levels of OGG1 and HPRT1 in BPP-treated cells compared to untreated controls, with a dose-dependent elevation in OGG1 expression involved in DNA damage response. This study concluded that BPP exhibits both cytotoxic and genotoxic effects on MDBK cells. Expression of DNA repair genes (OGG1, HPRT1) served as biomarkers for genotoxicity. Furthermore, it is recommended that additional studies on BPP's molecular toxicity and its cross-species effects should be explored further to combat its harmful effects.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-025-01068-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01068-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

双酚P (BPP)是一种公认的对人体健康有害的内分泌干扰物。本研究旨在通过检测基因表达、遗传毒性和细胞存活率的变化来评估BPP对马丁-达比牛肾(MDBK)细胞的细胞毒性和基因毒性作用。采用多种检测方法,包括MTT法、彗星法、微核法和实时PCR法进行基因表达分析。MTT实验表明,在0.5µM、1µM、2µM、4µM、8µM、16µM、32µM、64µM、128µM和256µM浓度下,32µM BPP (LC50)处理24 h后细胞存活率为50%。彗星分析显示,与对照组相比,BPP处理组的彗星尾部长度显着增加,表明3xLC50/2剂量浓度的BPP对DNA的损伤最大。微核(MNi)频率高于双核。与阴性对照组相比,高剂量组的细胞动力学阻断增殖指数(CBPI)也显著升高。基因表达分析表明,与未处理的对照组相比,bpp处理的细胞中OGG1和HPRT1水平升高,OGG1表达的剂量依赖性升高涉及DNA损伤反应。本研究表明,BPP对MDBK细胞具有细胞毒性和基因毒性作用。DNA修复基因(OGG1, HPRT1)的表达可作为遗传毒性的生物标志物。此外,建议进一步研究BPP的分子毒性及其跨物种效应,以对抗其有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyto-genotoxic assessment of bisphenol P through expression of DNA damage/repair genes in MDBK cell line.

Bisphenol P (BPP) is a recognized endocrine disruptor with detrimental effects on human health. This study aimed to evaluate BPP's cytotoxic and genotoxic effects on Madin-Darby bovine kidney (MDBK) cells by examining changes in gene expression, genotoxicity, and cell survival. Various assays were employed, including the MTT assay, comet assay, micronucleus assay, and real-time PCR for gene expression analysis. Among the series of concentrations (0.5 µM, 1 µM, 2 µM, 4 µM, 8 µM, 16 µM, 32 µM, 64 µM, 128 µM, and 256 µM), the treatment with 32 µM BPP (LC50) resulted in 50% cell viability after 24 h via MTT assay. The comet assay revealed a significant increase in comet tail length in BPP-treated groups compared to controls, indicating DNA with the highest damage at the 3xLC50/2 dose concentration of BPP. The frequency of micronuclei (MNi) was higher than binuclei. A significantly higher level of cytokinesis-block proliferation index (CBPI) was also observed at higher doses than in the negative control group. Gene expression analysis indicated increased levels of OGG1 and HPRT1 in BPP-treated cells compared to untreated controls, with a dose-dependent elevation in OGG1 expression involved in DNA damage response. This study concluded that BPP exhibits both cytotoxic and genotoxic effects on MDBK cells. Expression of DNA repair genes (OGG1, HPRT1) served as biomarkers for genotoxicity. Furthermore, it is recommended that additional studies on BPP's molecular toxicity and its cross-species effects should be explored further to combat its harmful effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信