{"title":"SFRP1 reduces neutrophil infiltration and inhibits the Wnt/β-catenin pathway to alleviate oral submucous fibrosis.","authors":"Rong Zhou, Lin Yin, Xin Zhang, Keke Zhu","doi":"10.1007/s11626-024-00945-9","DOIUrl":"10.1007/s11626-024-00945-9","url":null,"abstract":"<p><p>Oral submucous fibrosis (OSF) is a precancerous condition characterized by oral mucosal atrophy with fibrosis of the submucosal tissue. OSF has a high prevalence, and treatment requires improvement. Our study aims to investigate the role and mechanism of secreted frizzled-related protein 1 (SFRP1) in OSF. We constructed an arecoline-induced OSF mice model. Through Pearson's correlation analysis, we investigated the association between SFRP1 levels and expressions of proteins related to the Wnt/β-catenin signaling pathway, as well as the correlation between SFRP1 levels and the degree of neutrophil infiltration. Moreover, neutrophil infiltration intensity, tissue fibrosis degree, and levels of β-catenin, Cyclin D1, and c-myc were evaluated after SFRP1 overexpression treatment through immunohistochemical and biochemical assays. A Wnt/β-catenin pathway activator was used to investigate the molecular mechanism of SFRP1 in the arecoline-induced OSF cell model. Compared with the control group, mice in the OSF group exhibited increased collagen deposition and more severe fibrosis in the oral mucosal tissue (OMT). In the OMT of OSF mice, the levels of SFRP1 were decreased. The levels of SFRP1 exhibited a negative correlation with the levels of Wnt/β-catenin proteins and neutrophil infiltration in the OMT. Upon SFRP1 overexpression, there was a reduction in neutrophil infiltration and fibrosis in the OMT, as well as inhibition of Wnt/β-catenin-related proteins. In vitro, the Wnt/β-catenin pathway activator further reversed the effect of SFRP1 overexpression on OSF. SFRP1 attenuates OSF by reducing neutrophil infiltration and inhibiting the Wnt/β-catenin pathway.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gyeong Ryul Ryu, Dongryeoul Bae, Shahab Uddin, Mohammed Sohel Meah, Waqas Ahmad, Kris John Silvano, Gyeongik Ahn, Joon-Yung Cha, Esder Lee, Ki-Ho Song, Woe-Yeon Kim, Min Gab Kim
{"title":"Effect of transcription factor MEOX on insulin gene expression in glucagon-like peptide 1-secreting cells.","authors":"Gyeong Ryul Ryu, Dongryeoul Bae, Shahab Uddin, Mohammed Sohel Meah, Waqas Ahmad, Kris John Silvano, Gyeongik Ahn, Joon-Yung Cha, Esder Lee, Ki-Ho Song, Woe-Yeon Kim, Min Gab Kim","doi":"10.1007/s11626-024-00964-6","DOIUrl":"10.1007/s11626-024-00964-6","url":null,"abstract":"<p><p>Currently, the supply of beta cells for islet transplantation in the treatment of type 1 diabetes is limited. Enteroendocrine cells (EECs) are believed to have high potential as stem cells because they share significant developmental similarities with beta cells. In a previous study, we derived EEC cells that secrete individual gut hormones from STC-1 cells. This study aimed to examine intestinal hormone secretion and expression, investigate the expression of developmental-related transcription factors, and analyze the effect of MEOX on insulin gene expression in isolated EECs. The expression and secretion of enteroendocrine hormones were evaluated in L6 and K34 cells from STC-1 cells. Expression patterns of beta cell- and development-related genes in L6 and K34 cells were compared with beta cells. Comparisons of the MEOX-induced expression of Ins in beta cells and GLP-1-secreting cells were investigated. Both L6 and K34 cells predominantly expressed Glp1 and Gip, respectively. The secretion pattern of GLP-1 in L6 cells was similar to that of GLUTag cells. Previous microarray analysis confirmed MEOX as developmentally relevant transcription factors expressed in beta cells. Overexpression of MEOX showed a tendency to increase Ins expression in L6 and GLUTag cells, but not in MIN6 cells. However, when PDX1 and MEOX were co-expressed in GLUTag cells, insulin expression was suppressed, similar to that observed in MIN6 cells. These findings suggest a potential role for MEOX in regulating the expression of the Ins gene in both beta cells and GLP-1-secreting cells. Further studies are warranted to elucidate the underlying mechanism.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lili Shi, Yingying Xu, Chao Zhao, Guangjin Qu, Ming Hao
{"title":"Liraglutide ameliorates high glucose-induced vascular endothelial injury through TRIB3/NF-κB signaling pathway.","authors":"Lili Shi, Yingying Xu, Chao Zhao, Guangjin Qu, Ming Hao","doi":"10.1007/s11626-024-00947-7","DOIUrl":"10.1007/s11626-024-00947-7","url":null,"abstract":"<p><p>As one of the most commonly used antidiabetic medications clinically, liraglutide is involved in the protection of vascular endothelium, and whether it can relieve high glucose-induced vascular endothelial damage was unknown. This study aims to address the response of liraglutide (LIRA) on human umbilical vein endothelial cells, as well as to elucidate its possible underlying mechanism. We established a vascular endothelial cell injury model by exposing human umbilical vein endothelial cells (HUVECs) to high glucose, and used LIRA pretreatment before HG treatment to address the endothelial protective effect of LIRA. Our results suggest that LIRA prevented HG-induced HUVEC apoptosis, oxidative stress, inflammasome activation, and pyroptosis. Furthermore, silencing of tribbles homolog 3 (TRIB3) could markedly reduce HG-induced HUVEC apoptosis, ROS level, the expressions of TXNIP, cleaved caspase3, NLRP3, and caspase1, indicating TRIB3 inhibition protected HUVECs against HG-induced vascular endothelial injury. In addition, LIRA restrained NF-κB/IκB-α signaling pathway activation in HUVECs. Thus, LIRA appears to mitigate HG-induced apoptosis, oxidative stress, inflammasome activation, and pyroptosis in HUVECs via regulating the TRIB3/NF-κB/IκB-α signaling pathway. Our study provides new insight into the mechanisms underlying the protective activity of LIRA against the vascular endothelial injury in diabetic vascular complication.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ye Rin Jeon, Min Seong Kim, Min Hee Park, Seung Tae Lee
{"title":"Enhancement of the transfection efficiency of porcine spermatogonial stem cells by far-infrared radiation-based electroporation.","authors":"Ye Rin Jeon, Min Seong Kim, Min Hee Park, Seung Tae Lee","doi":"10.1007/s11626-024-00967-3","DOIUrl":"10.1007/s11626-024-00967-3","url":null,"abstract":"","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Md Younus, Takahiro Yamanaka, Masayuki Shimada
{"title":"The protective effects of antioxidants against endogenous and exogenous oxidative stress on bull sperm.","authors":"Ali Md Younus, Takahiro Yamanaka, Masayuki Shimada","doi":"10.1007/s11626-024-00944-w","DOIUrl":"10.1007/s11626-024-00944-w","url":null,"abstract":"<p><p>Oxidative stress, caused by both endogenous and exogenous factors, affects sperm function by damaging morphology and reducing metabolic activity, leading to reduced fertilization ability. The purpose of this study was to investigate the effects of oxidative stress on bull sperm and to evaluate the efficacy of targeted antioxidants in mitigating these detrimental effects. Fresh bull semen samples were subjected to hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and antimycin treatments to induce oxidative stress, and the antioxidants PQQ, ergothioneine, and vitamin C were applied to counteract the induced stress. Sperm motility, viability, and reactive oxygen species (ROS) levels in the cytoplasm and mitochondria of sperm were assessed using computer-assisted sperm analysis (CASA) and flow cytometry. The treatment with H<sub>2</sub>O<sub>2</sub> rapidly decreased sperm viability, and antimycin-induced mitochondrial ROS mainly decreased sperm motility; PQQ and vitamin C effectively reduced mitochondrial ROS, while ergothioneine and vitamin C reduced cytosolic ROS. In frozen-thawed sperm, oxidative stress was elevated in both cytoplasm and mitochondria, and all three antioxidants improved sperm motility by inhibiting ROS production. Furthermore, the localization of oxidized lipids (4-hydroxynonenal) in sperm was detected using immunofluorescence, indicating that oxidative stress affects the head and midpiece of sperm. These findings highlight the potential of targeted antioxidants to mitigate the detrimental effects of oxidative stress on bull sperm and provide valuable insights to improve semen quality and optimize the use of antioxidants in artificial insemination.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cultivation of primary cells derived from three organs of a striped dolphin (Stenella coeruleoalba) using a simple culture method.","authors":"Kaede Tashiro, Takao Segawa, Miwa Suzuki, Yu Kanaji, Hikari Maeda, Takuya Itou","doi":"10.1007/s11626-024-00939-7","DOIUrl":"10.1007/s11626-024-00939-7","url":null,"abstract":"<p><p>Cetacean-cultured cells are a promising tool for life science research. Most cells used in cetacean research are derived from the skin and kidneys. However, cell cultures from various organs are required for more flexible cetacean research. Primary cultures were prepared from kidney, intestinal, and lung tissues using a simple tissue fragment culture method from a striped dolphin (Stenella coeruleoalba). Kidney and intestinal cells were mostly epithelial-like, whereas lung cells were mostly fibroblast-like. The simple tissue fragment culture method presented in this study will be useful for expanding cetacean cell resources. Culturing allogeneic cell models is expected to introduce a flexible in vitro approach to cetacean research.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Yi, Lina Suo, Haixiu Ma, Ronghua Ma, Jing Zhao, Shaoqian Zhai, Haiyan Wang, Zhanhai Su
{"title":"The role of MDM2 in angiogenesis: implications for endothelial tip cell formation.","authors":"Yi Yi, Lina Suo, Haixiu Ma, Ronghua Ma, Jing Zhao, Shaoqian Zhai, Haiyan Wang, Zhanhai Su","doi":"10.1007/s11626-024-00946-8","DOIUrl":"10.1007/s11626-024-00946-8","url":null,"abstract":"<p><p>In the present study, we examined the role of MDM2 in the angiogenesis process and its potential association with the sprouting of endothelial tip cells. To address this, we performed hypoxia-treated gastric cancer cells (HGC-27) to quantitative RT-PCR and Western blot analysis to measure the levels of MDM2 and VEGF-A mRNA and protein expression. Subsequently, we employed siRNA to disrupt MDM2 expression, followed by hypoxia treatment. The expression levels of MDM2 and VEGF-A mRNA and protein were subsequently reassessed. Additionally, ELISA was utilized to quantify the secretion levels of VEGF-A in each experimental group. A conditioned medium derived from HGC-27 cells treated with different agents was employed to assess its influence on the formation of EA.hy926 endothelial tip cells, using various techniques including Transwell plates migration assays, wound healing experiments, vascular formation assays, scanning electron microscopy, and immunofluorescence staining. These findings demonstrated that the in vitro knockdown of MDM2 in the conditioned medium exhibited significant inhibitory effects on endothelial cell migration, wound healing, and vascular formation. Additionally, the intervention led to a reduction in the presence of CD34<sup>+</sup> tip cells and the formation of filopodia in endothelial cells, while partially restoring the integrity of tight junctions. Subsequent examination utilizing RNA-seq revealed that the suppression of MDM2 in HGC-27 cells resulted in the downregulation of the PI3K/AKT signaling pathway. Consequently, this downregulation led to an elevation in angiogenic effects induced by hypoxia.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Imogen L Targett, Lucy A Crompton, Myra E Conway, Tim J Craig
{"title":"Differentiation of SH-SY5Y neuroblastoma cells using retinoic acid and BDNF: a model for neuronal and synaptic differentiation in neurodegeneration.","authors":"Imogen L Targett, Lucy A Crompton, Myra E Conway, Tim J Craig","doi":"10.1007/s11626-024-00948-6","DOIUrl":"10.1007/s11626-024-00948-6","url":null,"abstract":"<p><p>There has been much interest in the use of cell culture models of neurones, to avoid the animal welfare and cost issues of using primary and human-induced pluripotent stem cell (hiPSC)-derived neurones respectively. The human neuroblastoma cell line, SH-SY5Y, is extensively used in laboratories as they can be readily expanded, are of low cost and can be differentiated into neuronal-like cells. However, much debate remains as to their phenotype once differentiated, and their ability to recapitulate the physiology of bona fide neurones. Here, we characterise a differentiation protocol using retinoic acid and BDNF, which results in extensive neurite outgrowth/branching within 10 days, and expression of key neuronal and synaptic markers. We propose that these differentiated SH-SY5Y cells may be a useful substitute for primary or hiPSC-derived neurones for cell biology studies, in order to reduce costs and animal usage. We further propose that this characterised differentiation timecourse could be used as an in vitro model for neuronal differentiation, for proof-of principle studies on neurogenesis, e.g. relating to neurodegenerative diseases. Finally, we demonstrate profound changes in Tau phosphorylation during differentiation of these cells, suggesting that they should not be used for neurodegeneration studies in their undifferentiated state.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roisin Moloney, Carlton L Pavy, Richard G S Kahl, Hannah K Palliser, Jon J Hirst, Julia C Shaw
{"title":"Protection from oxygen-glucose deprivation by neurosteroid treatment in primary neurons and oligodendrocytes.","authors":"Roisin Moloney, Carlton L Pavy, Richard G S Kahl, Hannah K Palliser, Jon J Hirst, Julia C Shaw","doi":"10.1007/s11626-024-00957-5","DOIUrl":"10.1007/s11626-024-00957-5","url":null,"abstract":"<p><p>Preterm birth results in an increased risk of neonatal brain injury and neurobehavioural disorders. Despite the seriousness of these adverse outcomes, there are currently no effective therapies to protect the vulnerable developing brain. We propose that neurosteroid replacement therapy may be a novel approach in reducing detrimental neurological outcomes following preterm birth. The use of guinea pig primary neuronal and oligodendrocyte cultures with relevance to late gestation allows insight into the mechanisms behind the effectiveness of these treatments. Primary neuronal and oligodendrocyte cultures were derived from fetal guinea pig frontal cortex brain tissue at gestational age 62 (GA62). Cell cultures were pre-treated with either etifoxine (5 µM) or zuranolone (1 µm) for 24 h prior to insult. Cells were then exposed to either oxygen-glucose deprivation (OGD; 0% O<sub>2</sub> and no glucose DMEM; preterm birth insult) or sham (standard cell culture conditions; 25 mM DMEM) for 2 h. Lactate dehydrogenase assay (LDH) was performed following OGD as a measure of cytotoxicity. Relative mRNA expression of key neuronal and oligodendrocyte markers, as well as neuronal receptors and transporters, were quantified using high throughput (Fluidigm) RT-PCR. OGD significantly increased cellular cytotoxicity in both neurons and oligodendrocytes. Additionally, key neuronal marker mRNA expression was reduced following OGD, and oligodendrocytes displayed arrested mRNA expression of key markers of lineage progression. Treatment with etifoxine restored a number of parameters back to control levels, whereas treatment with zuranolone provided a robust improvement in all parameters examined. This study has demonstrated the neuroprotective potential of neurosteroid replacement therapy in a model of hypoxia related to preterm birth. Neuroprotection appears to be mediated through glutamate reduction and increased brain derived neurotrophic factor (BDNF). Future work is warranted in examining these treatments in vivo, with the overall aim to suppress preterm associated brain damage and reduce long term outcomes for affected offspring.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong-Xia Fang, En-Qing Lu, E Xu, Yi-Yu Zhang, Min Zhu
{"title":"Arf1 promotes porcine intestinal epithelial cell proliferation via the mTORC1 signaling pathway.","authors":"Yong-Xia Fang, En-Qing Lu, E Xu, Yi-Yu Zhang, Min Zhu","doi":"10.1007/s11626-024-00942-y","DOIUrl":"10.1007/s11626-024-00942-y","url":null,"abstract":"<p><p>The promotion of gut health, a pervasive problem in modern animal husbandry, positively affects organismal health, productivity, and economics. Porcine intestinal epithelial cells (IPEC-J2) continuously proliferate to maintain intestinal homeostasis, including barrier, immune, and absorptive functions. Gut homeostasis is fundamental to organismal health. ADP-ribosylation factor 1 (Arf1), a small GTPase, plays a crucial role in coordinating mTORC1 in response to nutrients, especially amino acid availability in the gut. mTORC1 is the central hub of proliferation. Thus, it seems likely that Arf1 promotes IPEC-J2 cell proliferation. However, the exact role of Arf1 in the porcine gut remains unclear. Therefore, we evaluated the functional role and possible mechanisms of Arf1 in the porcine intestine through Arf1 overexpression and knockdown in IPEC-J2 cells. Arf1 overexpression and knockdown significantly enhanced and inhibited, respectively, IPEC-J2 cell viability, and PCNA expression varied with Arf1 expression. Moreover, the proportion of Ki67-positive cells was significantly greater in the Arf1-overexpressing group than in the control group. These results suggest that Arf1 improves IPEC-J2 cell proliferation. The underlying mechanism was explored by Western blotting. Arf1 overexpression and knockdown significantly enhanced and suppressed, respectively, the levels of p-S6K1 and p-RPS6, which are key downstream targets of the mTORC1 signaling pathway. Collectively, our findings reveal the role of the Arf1-mTORC1 axis in IPEC-J2 cell proliferation and its potential function in regulating intestinal homeostasis and health.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}