{"title":"RO4929097 inhibits NICD3 to alleviate pulmonary hypertension via blocking Notch3/HIF-2α/FoxM1 signaling pathway.","authors":"Hao Zhu, Cheng Li, Fang Hu, Lifu Wu, Ling Wu, Meihua Zhou, Wei Liu, Aiguo Dai","doi":"10.1007/s11626-024-00976-2","DOIUrl":"https://doi.org/10.1007/s11626-024-00976-2","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is a condition in which the smooth muscle cells (SMCs) in the pulmonary arteries multiply excessively, causing the arteries to narrow. This can ultimately result in right heart failure and premature death. Notch3 is an important factor involved in pulmonary vascular remodeling in PH. RO4929097, as a γ-secretase inhibitor that inhibits Notch3 signaling pathway, may be a potential drug for the treatment of PH, but its feasibility and related mechanism of action need to be further investigated. In vitro modeling by hypoxic incubation of human pulmonary artery SMCs (HPASMCs). RO4929097 and plasmids including overexpression-NICD3 (oe-NICD3) and NICD3 small interfering RNA (siRNA) were used to alter the expression of NICD3, and HIF-2α inhibitor PT-2385 was used to alter the expression of HIF-2α. Western blot, EdU incorporation assay was used to investigate the alteration of NICD3, HIF-2α, FoxM1 protein expression, and cell proliferation. The severity of PH in rats was assessed by measuring the weight ratio of right ventricle (RV) to left ventricle (LV) and septum (S) (RV/[LV + S]) and hematoxylin-eosin (H&E) staining of lung tissues in a hypoxia-induced PH rat model. We first determined that hypoxia induction for 48 h had the strongest induction of NICD3 and Notch3 in HPASMCs, and the strongest inhibition by 10 μM RO4929097. Treatment of HPASMCs under hypoxic conditions with RO4929097 inhibited hypoxia-induced expression of NICD3, HIF-2α, FoxM1, and proliferation of HPASMCs. The inhibitory effect of RO4929097 was reversed after overexpression of NICD3 in HPASMCs. Further, we found that PT-2385 reversed the promotional effect of overexpression of NICD3 on the proliferation of HPASMCs. In vivo experiments, hypoxia-induced PH rats treated with RO4929097 showed a reduction in right ventricular hypertrophy index (RVHI) and a return to normal pulmonary artery morphology, indicating a reduction in the severity of PH. Our data suggest that RO4929097 regulates the Notch3/HIF-2α/FoxM1 signaling pathway by inhibiting the expression of NICD3, thereby inhibiting hypoxia-induced proliferation of HPASMCs. In vivo experiments also confirmed that RO4929097 could alleviate PH as a potential therapeutic strategy.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142768635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effects of carbon-ion beam irradiation on three-dimensional in vitro models of normal oral mucosa and oral cancer: development of a novel tool to evaluate cancer therapy.","authors":"Eriko Naito, Kazuyo Igawa, Sho Takada, Kenta Haga, Witsanu Yortchan, Orakarn Suebsamarn, Ryota Kobayashi, Manabu Yamazaki, Jun-Ichi Tanuma, Tsuyoshi Hamano, Takashi Shimokawa, Kei Tomihara, Kenji Izumi","doi":"10.1007/s11626-024-00958-4","DOIUrl":"10.1007/s11626-024-00958-4","url":null,"abstract":"<p><p>Given that the original tumor microenvironment of oral cancer cannot be reproduced, predicting the therapeutic effects of irradiation using monolayer cultures and animal models of ectopic tumors is challenging. Unique properties of carbon-ion irradiation (CIR) characterized by the Bragg peak exert therapeutic effects on tumors and prevent adverse events in surrounding normal tissues. However, the underlying mechanism remains unclear. The biological effects of CIR were evaluated on three-dimensional (3D) in vitro models of normal oral mucosa (NOMM) and oral cancer (OCM3 and OCM4) consisting of HSC-3 and HSC-4 cells. A single 10- or 20-Gy dose of CIR was delivered to NOMM, OCM3, and OCM4 models. Histopathological and histomorphometric analyses and labeling indices for Ki-67, γH2AX, and TUNEL were examined after CIR. The concentrations of high mobility group box 1 (HMGB1) were measured. NOMM exhibited epithelial thinning after CIR, which could be caused by the decreased presence of Ki-67-labeled basal cells. The relative proportion of the thickness of cancer cells to the underlying stroma in cancer models decreased after CIR. This finding appeared to be supported by changes in the three labeling indices, indicating CIR-induced cancer cell death, mostly via apoptosis. Furthermore, the three indices and the HMGB1 release levels significantly differed among the OCM4 that received different doses and with different incubation times after CIR while those of the OCM3 models did not, suggesting more radiosensitivity in the OCM4. The three 3D in vitro models can be a feasible and novel tool to elucidate radiation biology.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1184-1199"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rei Noguchi, Julia Osaki, Takuya Ono, Yuki Adachi, Shuhei Iwata, Yuki Yoshimatsu, Kazuki Sasaki, Akira Kawai, Tadashi Kondo
{"title":"Pharmacoproteogenomic approach identifies on-target kinase inhibitors for cancer drug repositioning.","authors":"Rei Noguchi, Julia Osaki, Takuya Ono, Yuki Adachi, Shuhei Iwata, Yuki Yoshimatsu, Kazuki Sasaki, Akira Kawai, Tadashi Kondo","doi":"10.1007/s11626-024-00983-3","DOIUrl":"10.1007/s11626-024-00983-3","url":null,"abstract":"<p><p>Drug repositioning of approved drugs offers advantages over de novo drug development for a rare type of cancer. To efficiently identify on-target drugs from clinically successful kinase inhibitors in cancer drug repositioning, drug screening and molecular profiling of cell lines are essential to exclude off-targets. We developed a pharmacoproteogenomic approach to identify on-target kinase inhibitors, combining molecular profiling of genomic features and kinase activity, and drug screening of patient-derived cell lines. This study examined eight patient-derived giant cell tumor of the bone (GCTB) cell lines, all of which harbored a signature mutation of H3-3A but otherwise without recurrent copy number variants and mutations. Kinase activity profiles of 100 tyrosine kinases with a three-dimensional substrate peptide array revealed that nine kinases were highly activated. Pharmacological screening of 60 clinically used kinase inhibitors found that nine drugs directed at 29 kinases strongly suppressed cell viability. We regarded ABL1, EGFR, and LCK as on-target kinases; among the two corresponding on-target kinase inhibitors, osimertinib and ponatinib emerged as on-target drugs whose target kinases were significantly activated. The remaining 26 kinases and seven kinase inhibitors were excluded as off-targets. Our pharmacoproteomic approach enabled the identification of on-target kinase inhibitors that are useful for drug repositioning.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1200-1214"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"S100A11 is involved in the progression of colorectal cancer through the desmosome-catenin-TCF signaling pathway.","authors":"Jin Zhou, Hitoshi Murata, Nahoko Tomonobu, Naoko Mizuta, Atsuko Yamakawa, Ken-Ichi Yamamoto, Rie Kinoshita, Masakiyo Sakaguchi","doi":"10.1007/s11626-024-00930-2","DOIUrl":"10.1007/s11626-024-00930-2","url":null,"abstract":"<p><p>Compiling evidence has indicated that S100A11 expression at high levels is closely associated with various cancer species. Consistent with the results reported elsewhere, we have also revealed that S100A11 is highly expressed in squamous cell carcinoma, mesothelioma, and pancreatic cancers and plays a crucial role in cancer progression when secreted into extracellular fluid. Those studies are all focused on the extracellular role of S100A11. However, most of S100A11 is still present within cancer cells, although the intracellular role of S100A11 in cancer cells has not been fully elucidated. Thus, we aimed to investigate S100A11 functions within cancer cells, primarily focusing on colorectal cancer cells, whose S100A11 is abundantly present in cells and still poorly studied cancer for the protein. Our efforts revealed that overexpression of S100A11 promotes proliferation and migration, and downregulation inversely dampens those cancer behaviors. To clarify how intracellular S100A11 aids cancer cell activation, we tried to identify S100A11 binding proteins, resulting in novel binding partners in the inner membrane, many of which are desmosome proteins. Our molecular approach defined that S100A11 regulates the expression level of DSG1, a component protein of desmosome, by which S100A11 activates the TCF pathway via promoting nuclear translocation of γ-catenin from the desmosome. The identified new pathway greatly helps to comprehend S100A11's nature in colorectal cancers and others.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1138-1149"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masakiyo Sakaguchi, Rie Kinoshita, Nahoko Tomonobu, Yoshihiko Sakaguchi, Junichiro Futami, Akira Yamauchi, Hitoshi Murata, Ken-Ichi Yamamoto, Tetta Takahashi, Yuma Gohara, Toshiki Ochi, Fan Jiang, Ni Luh Gede Yoni Komalasari, Youyi Chen, I Made Winarsa Ruma, I Wayan Sumardika, Jin Zhou, Tomoko Honjo, Futoshi Kuribayashi, Kazumi Sagayama, Shinichi Toyooka, Eisaku Kondo, Yusuke Inoue
{"title":"Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells.","authors":"Masakiyo Sakaguchi, Rie Kinoshita, Nahoko Tomonobu, Yoshihiko Sakaguchi, Junichiro Futami, Akira Yamauchi, Hitoshi Murata, Ken-Ichi Yamamoto, Tetta Takahashi, Yuma Gohara, Toshiki Ochi, Fan Jiang, Ni Luh Gede Yoni Komalasari, Youyi Chen, I Made Winarsa Ruma, I Wayan Sumardika, Jin Zhou, Tomoko Honjo, Futoshi Kuribayashi, Kazumi Sagayama, Shinichi Toyooka, Eisaku Kondo, Yusuke Inoue","doi":"10.1007/s11626-024-00992-2","DOIUrl":"10.1007/s11626-024-00992-2","url":null,"abstract":"<p><p>The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector's shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1215-1227"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal distribution of PTEN before directed cell migration in monolayers.","authors":"Quanzhi Lu, Saori Sasaki, Toshihiro Sera, Susumu Kudo","doi":"10.1007/s11626-024-00927-x","DOIUrl":"10.1007/s11626-024-00927-x","url":null,"abstract":"<p><p>The intracellular distribution of phosphatase and tensin homolog (PTEN) is closely related to directed cell migration. In single cells, PTEN accumulates at the rear of the cell before and during directed migration; however, the spatiotemporal distribution of PTEN in confluent cell monolayers, particularly before directed migration, remains unclear. In this study, we wounded a cell in confluent fetal rat skin keratinocytes (FRSKs) and examined the dynamics of PTEN in the cells adjacent to the wounded cell. In contrast to single-cell migration, we found that PTEN translocated to the nucleus before the beginning of directed migration. This nuclear translocation of PTEN did not occur in disconnected cells, and it was also suppressed by importin-β inhibitor and actin inhibitor. When the nuclear localization of PTEN was inhibited by an importin-β inhibitor, cell elongation in the direction of migration was also significantly inhibited. Our results indicate that PTEN translocation is induced by the disruption of cell-cell adhesion and requires the involvement of importin-β and actin cytoskeleton signaling. In addition, phosphatidylinositol 3,4,5-triphosphate (PIP3) may regulate PTEN distribution through its localized accumulation at the cell edge. Our findings suggest that the translocation of PTEN is crucial for directed cell migration and for responding to mechanical environmental changes in confluent cell monolayers.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1160-1173"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NCF-1 plays a pivotal role in the survival of adenocarcinoma cells of pancreatic and gastric origins.","authors":"Chiemi Furuya-Ikude, Akane Kitta, Naoko Tomonobu, Yoshihiro Kawasaki, Masakiyo Sakaguchi, Eisaku Kondo","doi":"10.1007/s11626-024-00994-0","DOIUrl":"10.1007/s11626-024-00994-0","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) play a pivotal biological role in cells, with ROS function differing depending on cellular conditions and the extracellular environment. Notably, ROS act as cytotoxic factors to eliminate infectious pathogens or promote cell death under cellular stress, while also facilitating cell growth (via ROS-sensing pathways) by modifying gene expression. Among ROS-related genes, neutrophil cytosolic factor-1 (NCF-1; p47phox) was identified as a ROS generator in neutrophils. This product is a subunit of a cytosolic NADPH oxidase complex activated in response to pathogens such as bacteria and viruses. NCF-1 has been examined primarily in terms of ROS-production pathways in macrophages and neutrophils; however, the expression of this protein and its biological role in cancer cells remain unclear. Here, we report expression of NCF-1 in pancreatic and gastric cancers, and demonstrate its biological significance in these tumor cells. Abundant expression of NCF-1 was observed in pancreatic adenocarcinoma (PDAC) lines and in patient tissues, as well as in gastric adenocarcinomas. Accumulation of the protein was also detected in the invasive/metastatic foci of these tumors. Unexpectedly, BxPC-3 underwent apoptotic cell death when transfected with a small interfering RNA (siRNA) specific to NCF-1, whereas the cells treated with a control siRNA proliferated in a time-dependent manner. A similar phenomenon was observed in HSC-58, a poorly differentiated gastric adenocarcinoma line. Consequently, the tumor cells highly expressing NCF-1 obtained coincident accumulation of ROS and reduced glutathione (GSH) with expression of glutathione peroxidase 4 (GPX4), a quencher involved in ferroptosis. Unlike the conventional role of ROS as a representative cytotoxic factor, these findings suggest that NCF-1-mediated ROS generation may be required for expansive growth of PDAC and gastric cancers.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"1151-1159"},"PeriodicalIF":1.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dandan Luo, Wantao Xie, Xiaoli He, Xiangui Zhou, Peng Ye, Peng Wang
{"title":"Exosomal miR-590-3p derived from bone marrow mesenchymal stem cells promotes osteoblast differentiation and osteogenesis by targeting TGFBR1.","authors":"Dandan Luo, Wantao Xie, Xiaoli He, Xiangui Zhou, Peng Ye, Peng Wang","doi":"10.1007/s11626-024-00985-1","DOIUrl":"10.1007/s11626-024-00985-1","url":null,"abstract":"<p><p>Bone marrow mesenchymal stem cells (BMSCs) have been verified to be essential factors regulating osteogenic functions, which is mainly attributed to their secretion of extracellular vesicles. Exosomes derived from BMSCs (BMSCs-Exo) contribute to osteoblast functions that are critical for improving bone defect. Our current study aims to investigate the molecular mechanism dominated by BMSCs-Exo that affects osteoblast differentiation and osteogenesis. The first step this study validated that BMSCs co-culture enhanced the differentiation ability of osteoblast and promoted bone mineralization, while these tendencies were abolished after GW4869 treatment. Next, the BMSCs-Exo was isolated and identified by TEM observation, insight detection, and western blot analysis. Furthermore, BMSCs-Exo treatment could efficiently promote the differentiation ability and the bone mineralization of osteoblasts, decrease the mRNA levels of Collagen I and Collagen III, and increase the levels of osteogenic proteins, including alkaline phosphatase (ALP), Turning Bone Morphogenetic Protein 2 (BMP2), Bone sialoprofein (BSP), osteocalcin (OCN), and osterix (OSX). However, the abovementioned effects of BMSCs-Exo could be abolished by miR-590-3p silencing. Mechanistic analysis unmasked the negative regulation of miR-590-3p on its downstream target TGFBR1. Finally, the effects of miR-590-3p/TGFBR1 axis on the differentiation and osteogenesis of osteoblasts were validated by rescue assays. In conclusion, the present study demonstrates that exosomal miR-590-3p secreted by BMSCs can induce osteoblast differentiation and osteogenesis.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}