人参皂苷Rb1抑制M1巨噬细胞诱导的igfbp2介导的内皮-间质转化,减轻慢性心力衰竭小鼠心肌纤维化。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Yang Jiang, Qi Zhao, Ting Zhang, Songbo Lan, Xu Yan, Qi Chen
{"title":"人参皂苷Rb1抑制M1巨噬细胞诱导的igfbp2介导的内皮-间质转化,减轻慢性心力衰竭小鼠心肌纤维化。","authors":"Yang Jiang, Qi Zhao, Ting Zhang, Songbo Lan, Xu Yan, Qi Chen","doi":"10.1007/s11626-025-01060-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ginsenoside Rb1 ameliorates renal fibrosis, yet its effects on myocardial fibrosis (MF) remain unclear. In this study, we aimed to explore the role of ginsenoside Rb1 in chronic heart failure (CHF) and MF. To explore the correlation between endothelial-mesenchymal transition (EndMT) in endothelial cells and IGFBP2 expression in M1 macrophages, M1 macrophages were polarized and co-cultured with myocardial microvascular endothelial cells (MMVECs). IGFBP2 levels in the macrophages and levels of endothelial-specific markers and EndMT-related indexes in MMVECs were measured. Additionally, we treated the macrophages with ginsenoside Rb1. The CHF mice model was established using transverse aortic constriction (TAC) and then treated with ginsenoside Rb1. The effects of Rb1 on cardiac function, MF, and cardiomyocyte hypertrophy in CHF mice were assessed. We observed the successful differentiation of M1 macrophages using in vitro experiments. M1 macrophages co-cultured with MMVECs demonstrated the ability to enhance the EndMT effect in MMVECs, as evidenced by elevated levels of IGFBP2 in the macrophages and a reduction in the viability of MMVECs. This decrease in cell viability was mitigated following the knockdown of IGFBP2. Rb1 treatment significantly suppressed the expression of IGFBP2 and inhibited the occurrence of the EndMT in MMVECs. The in vivo experiment findings showed that ginsenoside Rb1 notably enhanced cardiac function, attenuated cardiomyocyte hypertrophy, and alleviated MF in CHF mice. Furthermore, ginsenoside Rb1 inhibited M1 macrophage polarization, reduced IGFBP2 expression in the myocardium, and suppressed the EndMT effect of MMVECs in mice. Ginsenoside Rb1 alleviated MF in mice with CHF by inhibiting M1 macrophage IGFBP2-mediated EndMT.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside Rb1 inhibits M1 macrophages-induced IGFBP2-mediated endothelial-mesenchymal transition to alleviate myocardial fibrosis in mice with chronic heart failure.\",\"authors\":\"Yang Jiang, Qi Zhao, Ting Zhang, Songbo Lan, Xu Yan, Qi Chen\",\"doi\":\"10.1007/s11626-025-01060-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ginsenoside Rb1 ameliorates renal fibrosis, yet its effects on myocardial fibrosis (MF) remain unclear. In this study, we aimed to explore the role of ginsenoside Rb1 in chronic heart failure (CHF) and MF. To explore the correlation between endothelial-mesenchymal transition (EndMT) in endothelial cells and IGFBP2 expression in M1 macrophages, M1 macrophages were polarized and co-cultured with myocardial microvascular endothelial cells (MMVECs). IGFBP2 levels in the macrophages and levels of endothelial-specific markers and EndMT-related indexes in MMVECs were measured. Additionally, we treated the macrophages with ginsenoside Rb1. The CHF mice model was established using transverse aortic constriction (TAC) and then treated with ginsenoside Rb1. The effects of Rb1 on cardiac function, MF, and cardiomyocyte hypertrophy in CHF mice were assessed. We observed the successful differentiation of M1 macrophages using in vitro experiments. M1 macrophages co-cultured with MMVECs demonstrated the ability to enhance the EndMT effect in MMVECs, as evidenced by elevated levels of IGFBP2 in the macrophages and a reduction in the viability of MMVECs. This decrease in cell viability was mitigated following the knockdown of IGFBP2. Rb1 treatment significantly suppressed the expression of IGFBP2 and inhibited the occurrence of the EndMT in MMVECs. The in vivo experiment findings showed that ginsenoside Rb1 notably enhanced cardiac function, attenuated cardiomyocyte hypertrophy, and alleviated MF in CHF mice. Furthermore, ginsenoside Rb1 inhibited M1 macrophage polarization, reduced IGFBP2 expression in the myocardium, and suppressed the EndMT effect of MMVECs in mice. Ginsenoside Rb1 alleviated MF in mice with CHF by inhibiting M1 macrophage IGFBP2-mediated EndMT.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-025-01060-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01060-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人参皂苷Rb1改善肾纤维化,但其对心肌纤维化(MF)的影响尚不清楚。在本研究中,我们旨在探讨人参皂苷Rb1在慢性心力衰竭(CHF)和MF中的作用。为了探讨内皮细胞内皮-间充质转化(EndMT)与M1巨噬细胞IGFBP2表达的相关性,我们将M1巨噬细胞极化并与心肌微血管内皮细胞(MMVECs)共培养。测量巨噬细胞中IGFBP2水平和mmvec中内皮特异性标志物和endmt相关指标水平。此外,我们用人参皂苷Rb1处理巨噬细胞。采用横断主动脉缩窄法(TAC)建立CHF小鼠模型,然后用人参皂苷Rb1处理。评估Rb1对CHF小鼠心功能、MF和心肌细胞肥厚的影响。我们通过体外实验观察了M1巨噬细胞的成功分化。与MMVECs共培养的M1巨噬细胞能够增强MMVECs的EndMT效应,这可以通过巨噬细胞中IGFBP2水平升高和MMVECs活力降低来证明。在IGFBP2基因被敲除后,这种细胞活力的下降得到了缓解。Rb1处理显著抑制IGFBP2的表达,抑制mmves中EndMT的发生。体内实验结果显示,人参皂苷Rb1显著增强CHF小鼠心功能,减轻心肌细胞肥厚,减轻MF。人参皂苷Rb1抑制小鼠M1巨噬细胞极化,降低心肌IGFBP2表达,抑制mmves的EndMT作用。人参皂苷Rb1通过抑制M1巨噬细胞igfbp2介导的EndMT减轻CHF小鼠MF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ginsenoside Rb1 inhibits M1 macrophages-induced IGFBP2-mediated endothelial-mesenchymal transition to alleviate myocardial fibrosis in mice with chronic heart failure.

Ginsenoside Rb1 ameliorates renal fibrosis, yet its effects on myocardial fibrosis (MF) remain unclear. In this study, we aimed to explore the role of ginsenoside Rb1 in chronic heart failure (CHF) and MF. To explore the correlation between endothelial-mesenchymal transition (EndMT) in endothelial cells and IGFBP2 expression in M1 macrophages, M1 macrophages were polarized and co-cultured with myocardial microvascular endothelial cells (MMVECs). IGFBP2 levels in the macrophages and levels of endothelial-specific markers and EndMT-related indexes in MMVECs were measured. Additionally, we treated the macrophages with ginsenoside Rb1. The CHF mice model was established using transverse aortic constriction (TAC) and then treated with ginsenoside Rb1. The effects of Rb1 on cardiac function, MF, and cardiomyocyte hypertrophy in CHF mice were assessed. We observed the successful differentiation of M1 macrophages using in vitro experiments. M1 macrophages co-cultured with MMVECs demonstrated the ability to enhance the EndMT effect in MMVECs, as evidenced by elevated levels of IGFBP2 in the macrophages and a reduction in the viability of MMVECs. This decrease in cell viability was mitigated following the knockdown of IGFBP2. Rb1 treatment significantly suppressed the expression of IGFBP2 and inhibited the occurrence of the EndMT in MMVECs. The in vivo experiment findings showed that ginsenoside Rb1 notably enhanced cardiac function, attenuated cardiomyocyte hypertrophy, and alleviated MF in CHF mice. Furthermore, ginsenoside Rb1 inhibited M1 macrophage polarization, reduced IGFBP2 expression in the myocardium, and suppressed the EndMT effect of MMVECs in mice. Ginsenoside Rb1 alleviated MF in mice with CHF by inhibiting M1 macrophage IGFBP2-mediated EndMT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信