Li Wang, Meng Zhang, Shaowei Wang, Zhen Xing, Tong Jia, Xiaojia Sun, Hui Liu, Jie Yao, Yanlin Chen
{"title":"右美托咪定通过AMPK/PGC-1α途径促进线粒体生物发生,从而保护神经元功能。","authors":"Li Wang, Meng Zhang, Shaowei Wang, Zhen Xing, Tong Jia, Xiaojia Sun, Hui Liu, Jie Yao, Yanlin Chen","doi":"10.1007/s11626-025-01059-6","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction, often linked to the deregulation of mitochondrial biogenesis, plays a significant role in the progression of neurological diseases. Dexmedetomidine (Dex), a selective alpha-2 adrenergic agonist utilized for anesthesia and sedation, has a largely unexplored impact on mitochondrial function. In this study, cells were treated with Dex at concentrations of 10 μg/mL and 20 μg/mL. Mitochondrial function was assessed by measuring mitochondrial membrane potential, adenosine triphosphate (ATP) production, and oxygen consumption rates. The expression levels of key mitochondrial genes and proteins were analyzed using quantitative polymerase chain reaction (qPCR) and Western blot. To investigate the role of AMP-activated protein kinase α (AMPK), cells were co-treated with the AMPK inhibitor Compound C. Our results demonstrate that treating cells with Dex significantly enhances mitochondrial membrane potential, ATP production, and oxygen consumption rates. Additionally, Dex increases the expression of vital mitochondrial genes, including Mitochondrially Encoded NADH: Ubiquinone Oxidoreductase Core Subunit 6 (mtND6), Mitochondrially Encoded Cytochrome c Oxidase II (mtCO2), and Mitochondrially Encoded ATP Synthase 6 (mtATP6), while also improving the mtDNA-to-nDNA ratio. The treatment raises Messenger Ribonucleic Acid (mRNA) and protein levels of essential mitochondrial biogenesis regulators such as Nuclear Respiratory Factor 1(Nrf1), Mitochondrial Transcription Factor A (TFAM), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), and phosphorylated AMP-Activated Protein Kinase α (p-AMPKα). However, when cells are co-treated with the AMPK inhibitor compound C, these positive effects are lost, highlighting the necessity of AMPK activation for the mitochondrial enhancements induced by Dex. These findings suggest a promising therapeutic potential for Dex in supporting neuronal function through mitochondrial pathways.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexmedetomidine preserves neuronal function by promoting mitochondrial biogenesis through the AMPK/PGC-1α pathway.\",\"authors\":\"Li Wang, Meng Zhang, Shaowei Wang, Zhen Xing, Tong Jia, Xiaojia Sun, Hui Liu, Jie Yao, Yanlin Chen\",\"doi\":\"10.1007/s11626-025-01059-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial dysfunction, often linked to the deregulation of mitochondrial biogenesis, plays a significant role in the progression of neurological diseases. Dexmedetomidine (Dex), a selective alpha-2 adrenergic agonist utilized for anesthesia and sedation, has a largely unexplored impact on mitochondrial function. In this study, cells were treated with Dex at concentrations of 10 μg/mL and 20 μg/mL. Mitochondrial function was assessed by measuring mitochondrial membrane potential, adenosine triphosphate (ATP) production, and oxygen consumption rates. The expression levels of key mitochondrial genes and proteins were analyzed using quantitative polymerase chain reaction (qPCR) and Western blot. To investigate the role of AMP-activated protein kinase α (AMPK), cells were co-treated with the AMPK inhibitor Compound C. Our results demonstrate that treating cells with Dex significantly enhances mitochondrial membrane potential, ATP production, and oxygen consumption rates. Additionally, Dex increases the expression of vital mitochondrial genes, including Mitochondrially Encoded NADH: Ubiquinone Oxidoreductase Core Subunit 6 (mtND6), Mitochondrially Encoded Cytochrome c Oxidase II (mtCO2), and Mitochondrially Encoded ATP Synthase 6 (mtATP6), while also improving the mtDNA-to-nDNA ratio. The treatment raises Messenger Ribonucleic Acid (mRNA) and protein levels of essential mitochondrial biogenesis regulators such as Nuclear Respiratory Factor 1(Nrf1), Mitochondrial Transcription Factor A (TFAM), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), and phosphorylated AMP-Activated Protein Kinase α (p-AMPKα). However, when cells are co-treated with the AMPK inhibitor compound C, these positive effects are lost, highlighting the necessity of AMPK activation for the mitochondrial enhancements induced by Dex. These findings suggest a promising therapeutic potential for Dex in supporting neuronal function through mitochondrial pathways.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-025-01059-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01059-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dexmedetomidine preserves neuronal function by promoting mitochondrial biogenesis through the AMPK/PGC-1α pathway.
Mitochondrial dysfunction, often linked to the deregulation of mitochondrial biogenesis, plays a significant role in the progression of neurological diseases. Dexmedetomidine (Dex), a selective alpha-2 adrenergic agonist utilized for anesthesia and sedation, has a largely unexplored impact on mitochondrial function. In this study, cells were treated with Dex at concentrations of 10 μg/mL and 20 μg/mL. Mitochondrial function was assessed by measuring mitochondrial membrane potential, adenosine triphosphate (ATP) production, and oxygen consumption rates. The expression levels of key mitochondrial genes and proteins were analyzed using quantitative polymerase chain reaction (qPCR) and Western blot. To investigate the role of AMP-activated protein kinase α (AMPK), cells were co-treated with the AMPK inhibitor Compound C. Our results demonstrate that treating cells with Dex significantly enhances mitochondrial membrane potential, ATP production, and oxygen consumption rates. Additionally, Dex increases the expression of vital mitochondrial genes, including Mitochondrially Encoded NADH: Ubiquinone Oxidoreductase Core Subunit 6 (mtND6), Mitochondrially Encoded Cytochrome c Oxidase II (mtCO2), and Mitochondrially Encoded ATP Synthase 6 (mtATP6), while also improving the mtDNA-to-nDNA ratio. The treatment raises Messenger Ribonucleic Acid (mRNA) and protein levels of essential mitochondrial biogenesis regulators such as Nuclear Respiratory Factor 1(Nrf1), Mitochondrial Transcription Factor A (TFAM), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), and phosphorylated AMP-Activated Protein Kinase α (p-AMPKα). However, when cells are co-treated with the AMPK inhibitor compound C, these positive effects are lost, highlighting the necessity of AMPK activation for the mitochondrial enhancements induced by Dex. These findings suggest a promising therapeutic potential for Dex in supporting neuronal function through mitochondrial pathways.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.