Matthew G. Chandler;Anthony J. Croxford;Paul D. Wilcox
{"title":"A Multivariate Statistical Approach to Wrinkling Detection in Composites","authors":"Matthew G. Chandler;Anthony J. Croxford;Paul D. Wilcox","doi":"10.1109/TUFFC.2024.3436658","DOIUrl":"10.1109/TUFFC.2024.3436658","url":null,"abstract":"Nondestructive inspection using ultrasound in materials such as carbon-fiber reinforced polymers (CFRPs) is challenging as the ultrasonic wave will scatter from each ply in the structure of the component. This may be improved using image processing algorithms such as the total focusing method (TFM); however, the high level of backscattering within the sample is very likely to obscure a signal arising from a flaw. Detection of wrinkling, or out-of-plane fiber waviness, is especially difficult to automate as no additional scattering is produced (as might be the case with delaminations). Instead, wrinkling changes how a signal is scattered due to the physical displacement of ply layers from their expected location. In this article, we propose a method of detecting wrinkling by examining the regional variations in image intensity, which are expected to be highly correlated between similar ply layers in the structure. By characterizing the 2-D spatial autocorrelation of an area surrounding a given location in the image of pristine components, the distribution of acceptable values is estimated. Wrinkling is observed to correspond with a significant deviation from this distribution, which is readily detected. A comparison is made with an alternative image processing approach identified from the literature, finding that the proposed method has equivalent performance for large wrinkling amplitudes and better performance for low wrinkling amplitudes.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1141-1151"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions","authors":"Reza Pakdaman Zangabad;Hohyun Lee;Xitie Zhang;M. Sait Kilinc;Costas D. Arvanitis;F. Levent Degertekin","doi":"10.1109/TUFFC.2024.3436918","DOIUrl":"10.1109/TUFFC.2024.3436918","url":null,"abstract":"Tracking and controlling microbubble (MB) dynamics in the human brain through acoustic emission (AE) monitoring during transcranial focused ultrasound (tFUS) therapy are critical for attaining safe and effective treatments. The low-amplitude MB emissions have harmonic and ultra-harmonic components, necessitating a broad bandwidth and low-noise system for monitoring transcranial MB activity. Capacitive micromachined ultrasonic transducers (CMUTs) offer high sensitivity and low noise over a broad bandwidth, especially when they are tightly integrated with electronics, making them a good candidate technology for monitoring the MB activity through human skull. In this study, we designed a 16-channel analog front-end (AFE) electronics with a low-noise transimpedance amplifier (TIA), a band-gap reference circuit, and an output buffer stage. To assess AFE performance and ability to detect MB AE, we combined it with a commercial CMUT array. The integrated system has \u0000<inline-formula> <tex-math>${12}.{3}$ </tex-math></inline-formula>\u0000–\u0000<inline-formula> <tex-math>${61}.{25} ~text {mV}/text {Pa}$ </tex-math></inline-formula>\u0000 receive sensitivity with \u0000<inline-formula> <tex-math>${0}.{085}$ </tex-math></inline-formula>\u0000–\u0000<inline-formula> <tex-math>${0}.{23}~text {mPa}/text {(}text {Hz}text {)}^{1/2}$ </tex-math></inline-formula>\u0000 minimum detectable pressure (MDP) up to 3 MHz for a single element CMUT with 3.78 \u0000<inline-formula> <tex-math>$text {mm}^{{2}}$ </tex-math></inline-formula>\u0000 area. Experiments with free MBs in a microfluidic channel demonstrate that our system is able to capture key spectral components of MBs’ harmonics when sonicated at clinically relevant frequencies (0.5 MHz) and pressures (250 kPa). Together our results demonstrate that the proposed CMUT system can support the development of novel passive cavitation detectors (PCD) to track MB activity for attaining safe and effective focused ultrasound (FUS) treatments.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1087-1096"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automatic Detection of Anomalies in Post-Processed Data Applied to UTC Time Transfer Links","authors":"Antoine Baudiquez;Gianna Panfilo","doi":"10.1109/TUFFC.2024.3434378","DOIUrl":"10.1109/TUFFC.2024.3434378","url":null,"abstract":"In this article, we present a method for identifying anomalies, particularly time steps, which can affect data. Recognition of these anomalies is essential for understanding the intrinsic nature of problems that may occasionally affect the data, and for guaranteeing system reliability and accuracy. The tool presented, based on the Kalman filter, is optimized to work with post-processed data which means that the dataset is available at the time the algorithm is run. The main aim is to retain as much data as possible, while detecting anomalies, and avoid deleting valuable data. The originality of this tool with respect to the already existing Kalman-filter-based tools for detecting anomalies is substantial, because its objective is not only to enable the system to run but also to avoid unnecessary deletion of valuable data. This tool is designed to accurately determine the date of occurrence and magnitude of these anomalies, focusing on time steps. The tool presented will be applied, by way of example, to the time links used in Coordinated Universal Time (UTC) as calculated by Bureau International des Poids et Measures (BIPM), Paris, France. In addition, the algorithm developed will enable the BIPM’s Time Department to be rapidly alerted to unexpected behavior that may compromise UTC performance. To guarantee the reliability and accuracy of UTC, rigorous data validation and rapid problem identification are essential.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1162-1169"},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Accuracy Airborne Rangefinder via Deep Learning Based on Piezoelectric Micromachined Ultrasonic Cantilevers","authors":"Amirhossein Moshrefi;Abid Ali;Suaid Tariq Balghari;Frederic Nabki","doi":"10.1109/TUFFC.2024.3433407","DOIUrl":"10.1109/TUFFC.2024.3433407","url":null,"abstract":"This article presents a high-accuracy air-coupled acoustic rangefinder based on piezoelectric microcantilever beam array using continuous waves. Cantilevers are used to create a functional ultrasonic rangefinder with a range of 0–1 m. This is achieved through a design of custom arrays. This research investigates various classification techniques to identify airborne ranges using ultrasonic signals. The initial approach involves implementing individual models such as support vector machine (SVM), Gaussian Naive Bayes (GNB), logistic regression (LR), k-nearest neighbors (KNNs), and decision tree (DT). To potentially achieve better performance, the study introduces a deep learning (DL) architecture based on convolutional neural networks (CNNs) to categorize different ranges. The CNN model combines the strengths of multiple classification models, aiming for more accurate range detection. To ensure the model generalizes well to unseen data, a technique called k-fold cross-validation (CV), which provides the reliability assessment, is used. The proposed framework demonstrates a significant improvement in accuracy (100%), and area under the curve (AUC) (1.0) over other approaches.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1074-1086"},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Coudert, L Denis, A Chavignon, S Bodard, M Naveau, P P Sistiaga, R Saulnier, C Orset, D Vivien, C Chappard, O Couture
{"title":"3D Transcranial ultrasound localization microscopy reveals major arteries in the sheep brain.","authors":"A Coudert, L Denis, A Chavignon, S Bodard, M Naveau, P P Sistiaga, R Saulnier, C Orset, D Vivien, C Chappard, O Couture","doi":"10.1109/TUFFC.2024.3432998","DOIUrl":"10.1109/TUFFC.2024.3432998","url":null,"abstract":"<p><p>Cerebral circulation ensures the proper functioning of the entire human body, and its interruption, i.e. stroke, leads to irreversible damage. However, tools for observing cerebral circulation are still lacking. Although MRI and CT scans serve as conventional methods, their accessibility remains a challenge, prompting exploration into alternative, portable, and non-ionizing imaging solutions like ultrasound with reduced costs. While Ultrasound Localization Microscopy (ULM) displays potential in high-resolution vessel imaging, its 2D constraints limit its emergency utility. This study delves into the feasibility of 3D ULM with multiplexed probe for transcranial vessel imaging in sheep brains, emulating human skull characteristics. Three sheep underwent 3D ULM imaging, compared with angiographic MRI, while skull characterization was conducted in vivo using ultrashort bone MRI sequences and ex vivo via micro CT. The study showcased 3D ULM's ability to highlight vessels, down to the Circle of Willis, yet within a confined 3D field-of-view. Future enhancements in signal, aberration correction, and human trials hold promise for a portable, volumetric, transcranial ultrasound angiography system.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Piezoelectric Microacoustic Metamaterial Filters","authors":"Onurcan Kaya;Xuanyi Zhao;Cristian Cassella","doi":"10.1109/TUFFC.2024.3432849","DOIUrl":"10.1109/TUFFC.2024.3432849","url":null,"abstract":"We present the first microacoustic metamaterial filters (MMFs). The bandpass of the reported MMFs is not generated by coupling, electrically or mechanically, various acoustic resonances; instead, it originates from the passbands and stopbands of a chain of three acoustic metamaterial (AM) structures. These structures form an AM transmission line (AMTL) and two AM reflectors (AMRs), respectively. Two single metal strips serve as input and output transducers with a wideband frequency response. Since MMFs do not rely on resonators, they do not require high-resolution trimming or mass-loading steps to accurately tune the resonance frequency difference between various microacoustic resonant devices. These steps often involve finely controlling the thickness of a device layer, with resolutions that can be as low as a few Angstroms when building GHz filters. The acoustic bandwidth of MMFs is mostly determined by geometrical and mechanical parameters of their AM structures. MMFs necessitate external circuit components for impedance matching, in contrast to the existing microacoustic filters that often employ circuit components only to eliminate ripples within their passband. We have designed and constructed the first MMFs from a 400-nm-thick scandium-doped aluminum nitride (AlScN) film using a 30% scandium-doping concentration. These devices operate in the radio frequency (RF) range. We validated these devices’ performance through finite-element modeling (FEM) simulations and through measurements of a set of fabricated devices. When matched with ideal circuit components, the built MMFs exhibit filter responses with a center frequency in the ultrahigh-frequency range, a fractional bandwidth (FBW) of ~2.54%, a loss of ~4.9 dB, an in-band group delay between \u0000<inline-formula> <tex-math>$70~pm ~25$ </tex-math></inline-formula>\u0000 ns, and a temperature coefficient of frequency (TCF) of ~22.2 ppm/° C.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1063-1073"},"PeriodicalIF":3.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiro Kusunose;William J. Rodriguez;Huiwen Luo;Thomas J. Manuel;M. Anthony Phipps;Pai-Feng Yang;William A. Grissom;Peter E. Konrad;Li Min Chen;Benoit M. Dawant;Charles F. Caskey
{"title":"Design and Validation of a Patient-Specific Stereotactic Frame for Transcranial Ultrasound Therapy","authors":"Jiro Kusunose;William J. Rodriguez;Huiwen Luo;Thomas J. Manuel;M. Anthony Phipps;Pai-Feng Yang;William A. Grissom;Peter E. Konrad;Li Min Chen;Benoit M. Dawant;Charles F. Caskey","doi":"10.1109/TUFFC.2024.3420242","DOIUrl":"10.1109/TUFFC.2024.3420242","url":null,"abstract":"Transcranial-focused ultrasound (tFUS) procedures such as neuromodulation and blood-brain barrier (BBB) opening require precise focus placement within the brain. MRI is currently the most reliable tool for focus localization but can be prohibitive for procedures requiring recurrent therapies. We designed, fabricated, and characterized a patient-specific, 3-D-printed, stereotactic frame for repeated tFUS therapy. The frame is compact, with minimal footprint, can be removed and re-secured between treatments while maintaining sub-mm accuracy, and will allow for precise and repeatable transcranial FUS treatment without the need for MR-guidance following the initial calibration scan. Focus localization and repeatability were assessed via MR-thermometry and MR-acoustic radiation force imaging (ARFI) on an ex vivo skull phantom and in vivo nonhuman primates (NHPs), respectively. Focal localization, registration, steering, and re-steering were accomplished during the initial MRI calibration scan session. Keeping steering coordinates fixed in subsequent therapy and imaging sessions, we found good agreement between steered foci and the intended target, with target registration error (TRE) of \u0000<inline-formula> <tex-math>$1.2~pm ~0.3$ </tex-math></inline-formula>\u0000 (\u0000<inline-formula> <tex-math>${n} =4$ </tex-math></inline-formula>\u0000, ex vivo) and \u0000<inline-formula> <tex-math>$1.0~pm ~0.5$ </tex-math></inline-formula>\u0000 (\u0000<inline-formula> <tex-math>${n} =3$ </tex-math></inline-formula>\u0000, in vivo) mm. Focus position (steered and non-steered) was consistent, with sub-mm variation in each dimension between studies. Our 3-D-printed, patient-specific stereotactic frame can reliably position and orient the ultrasound transducer for repeated targeting of brain regions using a single MR-based calibration. The compact frame allows for high-precision tFUS to be carried out outside the magnet and could help reduce the cost of tFUS treatments where repeated application of an ultrasound focus is required with high precision.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 8","pages":"1030-1041"},"PeriodicalIF":3.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathan Blanken, Baptiste Heiles, Alina Kuliesh, Michel Versuis, Kartik Jain, David Maresca, Guillaume Lajoinie
{"title":"PROTEUS: A Physically Realistic Contrast-Enhanced Ultrasound Simulator-Part I: Numerical Methods.","authors":"Nathan Blanken, Baptiste Heiles, Alina Kuliesh, Michel Versuis, Kartik Jain, David Maresca, Guillaume Lajoinie","doi":"10.1109/TUFFC.2024.3427850","DOIUrl":"10.1109/TUFFC.2024.3427850","url":null,"abstract":"<p><p>Ultrasound contrast agents have been used as vascular reporters for the past 40 years. The ability to enhance vascular features in ultrasound images with engineered lipid-shelled microbubbles has enabled break-throughs such as the detection of tissue perfusion or super-resolution imaging of the microvasculature. However, advances in the field of contrast-enhanced ultra-sound are hindered by experimental variables that are difficult to control in a laboratory setting, such as complex vascular geometries, the lack of ground truth, and tissue nonlinearities. In addition, the demand for large datasets to train deep learning-based computational ultrasound imaging methods calls for the development of a simulation tool that can reproduce the physics of ultrasound wave interactions with tissues and microbubbles. Here, we introduce a physically realistic contrast-enhanced ultrasound simulator (PROTEUS) consisting of four inter-connected modules that account for blood flow dynamics in segmented vascular geometries, intravascular microbubble trajectories, ultrasound wave propagation, and nonlinear microbubble scattering. The first part of this study describes numerical methods that enabled this development. We demonstrate that PROTEUS can generate contrast-enhanced radiofrequency data in various vascular architectures across the range of medical ultrasound frequencies. PROTEUS offers a customizable framework to explore novel ideas in the field of contrast-enhanced ultrasound imaging. It is released as an open-source tool for the scientific community.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Test of Air-Coupled Probe for Sensitivity Map Production Using Parabolic Reflector","authors":"Linas Svilainis;Jorge Camacho Sosa Dias;Darius Kybartas;Andrius Chaziachmetovas;Valdas Eidukynas","doi":"10.1109/TUFFC.2024.3428326","DOIUrl":"10.1109/TUFFC.2024.3428326","url":null,"abstract":"The spatial distribution of a transduction efficiency over the air-coupled probe surface was proposed as a convenient tool for the probe integrity inspection. In this research, a parabolic reflector is used for passive focusing of the acoustic wave on the surface of inspected probe. Therefore, no additional transducer is required for inspection: probe is used for self-inspection. This approach allows to avoid the expensive focused transducer and replaces it by the same-type air-coupled transducers as probe under test. Moreover, the use of the parabolic mirror for focusing is frequency-independent; therefore, such approach allows to inspect a wide range of the probes. Spread spectrum signals were used for excitation to improve the SNR and bandwidth coverage. The results of the experimental measurements of air-coupled transducer sensitivity map with natural and artificial defects implemented have been presented. Comparison with previously proposed techniques is given. It was found that defects presence distorts the focused beam, creating large sidelobes. Therefore, sensitivity map obtained with the proposed technique is lower quality than with previously proposed techniques. Beam profile measurements using a miniature microphone have been presented. Aperture-limiting mask has been proposed to reduce the sidelobes arising due to defects presence and resulting measurements quality has been improved.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1132-1140"},"PeriodicalIF":3.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10597609","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pooja Dubey;Shreya Nigam;Dicky Silitonga;Nico F. Declercq
{"title":"Unveiling the Potential of Diffraction Gratings for Precision Separation of Higher Harmonics in Nonlinear Acoustics","authors":"Pooja Dubey;Shreya Nigam;Dicky Silitonga;Nico F. Declercq","doi":"10.1109/TUFFC.2024.3428917","DOIUrl":"10.1109/TUFFC.2024.3428917","url":null,"abstract":"Diffraction gratings, with their periodically ordered structures, have been critical components in acoustics, optics, and spectroscopy for over a century. The classical grating equation describes the emergence of diffraction phenomena by gratings, considering the groove periodicity and the characteristics of the incident wave. These gratings find extensive applications in communication, spectroscopy, architectural acoustics, and underwater research, and they are foundational to pioneering investigations in phononic crystals and meta-materials. While much attention has been given to understanding the diffraction behavior of linear acoustics concerning gratings, the literature lacks research regarding the influence of high-amplitude ultrasonic waves, which introduce observable nonlinear effects. This experimental enquiry presents a pioneering methodology for isolating higher harmonics from these nonlinear phenomena. We have developed a spatial filtering apparatus with a single-frequency transducer and a specially designed grating profile, enabling precise frequency selection or rejection.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1152-1161"},"PeriodicalIF":3.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}