Jef Canals, Boris Irié-Bi, Franck Dolhem, Matthieu Becuwe, Eric Gautron, Vincent Seznec, Rémi Dedryvère
{"title":"Organic All-Solid-State Lithium Metal Battery Using Polymer/Covalent Organic Framework Electrolyte","authors":"Jef Canals, Boris Irié-Bi, Franck Dolhem, Matthieu Becuwe, Eric Gautron, Vincent Seznec, Rémi Dedryvère","doi":"10.1002/batt.202400357","DOIUrl":"https://doi.org/10.1002/batt.202400357","url":null,"abstract":"<p>In this work, we have designed an all-organic and all-solid-state lithium metal battery based on 7,7,8,8-tetracyano-<i>p</i>-quinodimethane (TCNQ) as the organic electroactive material and a COF (Covalent Organic Framework)/PEO (PolyEthylene Oxide) composite as solid electrolyte. The use of a solid electrolyte allows fixing the solubility problem of organic electroactive materials in classical liquid electrolytes. This is the first time an all-solid-state organic battery based on TCNQ versus lithium metal is reported, since no liquid additive was included in the formulation of the electrolyte. We obtained a reversible capacity of 88 mAh g<sup>−1</sup> at the second discharge, and still 58 mAh g<sup>−1</sup> at the tenth discharge. The redox processes were investigated by X-ray Photoelectron Spectroscopy (XPS). We could evidence the involvement of the two lithiation steps of TCNQ (LiTCNQ and Li<sub>2</sub>TCNQ) in the reversible capacity. Optimization of the electrode manufacturing and formulation, and replacing the salt (LiI) by alternative ones opens the door to future improvements in the electrochemical performances. This study demonstrates the interest of COF-type organic structures in the formulation of organic solid electrolytes.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yusuke Morino, Kentaro Takase, Kazuhiro Kamiguchi, Daisuke Ito
{"title":"Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024)","authors":"Yusuke Morino, Kentaro Takase, Kazuhiro Kamiguchi, Daisuke Ito","doi":"10.1002/batt.202481001","DOIUrl":"https://doi.org/10.1002/batt.202481001","url":null,"abstract":"<p><b>The Front Cover</b> illustrates an ethanol solution phase–synthesized sulfide solid electrolyte with a characteristic core–shell structure; it produces a suitable functionalized interface at the sulfide solid electrolyte/cathode active material interface for all-solid-state batteries (ASSBs). This study is expected to provide fundamental and industrial insights for the practical implementation of ASSBs. More information can be found in the Research Article by Y. Morino and co-workers (DOI: 10.1002/batt.202400264).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 10","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jochen Stadler, Dr. Johannes Fath, Dr. Madeleine Ecker, Prof. Arnulf Latz
{"title":"Cover Feature: Combining a Data Driven and Mechanistic Model to Predict Capacity and Potential Curve-Degradation (Batteries & Supercaps 10/2024)","authors":"Jochen Stadler, Dr. Johannes Fath, Dr. Madeleine Ecker, Prof. Arnulf Latz","doi":"10.1002/batt.202481003","DOIUrl":"https://doi.org/10.1002/batt.202481003","url":null,"abstract":"<p><b>The Cover Feature</b> illustrates lithium-ion battery degradation. It demonstrates how individual aging modes—the loss of accessible active material from an electrode or the depletion of cyclable lithium ions—affect the capacities and balancing between the electrodes. These changes are visualized by color-coded surfaces that represent electrode potentials in the full cell′s cyclation window, transitioning from green to red to indicate degradation. Such alterations lead to a measurable capacity fade and changes in the full cell′s potential curve, as depicted by the differential voltage curve. The underlying work combines this mechanistic model with a data-driven model approach of the individual aging modes to predict both capacity fade and changes to the potential curve under various aging conditions. This will help to enhance understanding and prediction of battery degradation and can be the basis for a more precise onboard state-of-charge and state-of-health estimation of degraded batteries. More information can be found in the Research Article by J. Stadler and co-workers (DOI: 10.1002/batt.202400211).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 10","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nickel-Manganese-Based Layered Oxide for Sodium Ion Battery Cathode Materials","authors":"Yuheng Gao, Ping Zhang, Renyuan Zhang","doi":"10.1002/batt.202400486","DOIUrl":"https://doi.org/10.1002/batt.202400486","url":null,"abstract":"<p>Sodium-ion batteries (SIBs) have demonstrated significant potential as alternatives to conventional lithium-ion batteries (LIBs) for modern grid and mobile energy storage applications, due to the abundant natural resources and low cost of sodium. Layered transition metal oxides (LTMOs) have attracted much attention due to their high specific capacities, energy densities as well as the compatible preparation processes with those of LIBs cathode materials. Among these, Ni/Mn-based LTMOs (NMLOs) are particularly noteworthy for their cost-effectiveness and superior electrochemical performance, such as excellent capacity retention, voltage stability, high operating voltage and rate capability. In this review, we briefly introduce the synthesis methods of NMLOs, discuss the challenges, and summarize the solutions. The insights presented may contribute to the development of NMLOs based SIBs.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaotu Ma, Zifei Meng, Jiahui Hou, Zeyi Yao, Zexin Wang, Fulya Dogan, Zhenzhen Yang, Maksim Sultanov, Guanhui Gao, Hua Guo, Yimo Han, Jianguo Wen, Yan Wang
{"title":"Acid Etching-Driven Self-Assembly of Mn-Shell Inducing Rock-Salt Phase for Enhanced Single-Crystal Ni-Rich Cathodes","authors":"Xiaotu Ma, Zifei Meng, Jiahui Hou, Zeyi Yao, Zexin Wang, Fulya Dogan, Zhenzhen Yang, Maksim Sultanov, Guanhui Gao, Hua Guo, Yimo Han, Jianguo Wen, Yan Wang","doi":"10.1002/batt.202400501","DOIUrl":"https://doi.org/10.1002/batt.202400501","url":null,"abstract":"<p>With the wide adoption of Li-ion batteries, Ni-rich cathode is considered as one of the most promising candidates of cathodes due to its high energy density and low cost. However, stability decreased with increasing Ni content in the Ni-rich cathode. To solve this bottleneck, many strategies, such as coating, doping, surface modification, and special morphologies, have been developed. Herein, we introduce a groundbreaking approach for enhancing Ni-rich cathode through an innovative acid etching process that promotes Mn shell self-assembly, inducing a rock-salt phase on the surface. This method not only simplifies the Ni-rich cathode modification process, but also significantly improves the structural stability and electrochemical performance of Ni-rich cathode. Our findings demonstrate that developed single-crystal Ni-rich cathode shows 3–34 % better stability compared to both commercial modified Ni-rich cathode and unmodified counterparts. The unique Mn shell effectively mitigates reversible phase shifts during cycling, contributing to a remarkable enhancement in cycling stability. This novel fabrication technique paves the way for cost-effective production of high-performance cathode materials, offering substantial benefits for lithium-ion battery technology. And this study proves the potential of this method in advancing the design and development of durable, high-capacity cathode materials for next-generation batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Longchen Lyu, Bo Jiang, Jiangong Zhu, Xuezhe Wei, Haifeng Dai
{"title":"An Adaptive Combined Method for Lithium-Ion Battery State of Charge Estimation Using Long Short-Term Memory Network and Unscented Kalman Filter Considering Battery Aging","authors":"Longchen Lyu, Bo Jiang, Jiangong Zhu, Xuezhe Wei, Haifeng Dai","doi":"10.1002/batt.202400441","DOIUrl":"https://doi.org/10.1002/batt.202400441","url":null,"abstract":"<p>The accurate estimation of battery state of charge (SOC) enables the reliable and safe operation of lithium-ion batteries. Data-driven SOC estimation is considered an emerging and effective solution. However, existing data-driven SOC estimation methods typically involve direct estimation and lack effective feedback correction. Moreover, battery degradation poses additional challenges to accurate SOC estimation. Therefore, this study proposes an adaptive combined method for battery SOC estimation based on a long short-term memory (LSTM) network and unscented Kalman filter (UKF) algorithm considering battery aging status. First, an LSTM model is constructed to characterize the battery's dynamic performance instead of traditional battery models. Then, the UKF algorithm is employed to perform SOC estimation through the feedback of terminal voltage prediction. To enhance estimation accuracy under different aging statuses, a proportional-integral-derivative controller is employed to correct the capacity fading during the SOC estimation process. Validation results indicate that the terminal voltage prediction model demonstrates exceptional robustness against interference from current and voltage noise. Compared to the traditional estimation method combining the deep learning model and Kalman filter algorithm, the proposed method demonstrates superior estimation accuracy under various complex operating conditions. Furthermore, the proposed method outperforms the traditional method in estimation performance during battery aging.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eunbin Park, Jiwon Jeong, Yung-Eun Sung, Seung-Ho Yu
{"title":"Green Electrolytes for Aqueous Ion Batteries: Towards High-Energy and Low-Temperature Applications","authors":"Eunbin Park, Jiwon Jeong, Yung-Eun Sung, Seung-Ho Yu","doi":"10.1002/batt.202400579","DOIUrl":"https://doi.org/10.1002/batt.202400579","url":null,"abstract":"<p>Aqueous battery systems are increasingly recognized for their potential as environmentally friendly next-generation energy storage solutions. However, their commercialization faces challenges due to the need for electrolytes that can operate stably at high voltages and in low-temperatures. Traditional approaches to address these issues often involve materials that compromise the green nature. This review highlights the importance of developing environmentally friendly materials to improve the performance of aqueous electrolytes under high voltage in different types of aqueous electrolytes such as water-in-salt, molecular crowding electrolytes, eutectic electrolytes and cosolvents. In addition, we review advances in different types of aqueous electrolytes focused on using sustainable materials to achieve stable electrolytes at low-temperature by suppressing water crystallization and lowering the freezing point. By integrating these innovations, we envision a future where aqueous batteries offer both high performance and eco-friendliness, contributing significantly to the development of sustainable energy systems.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“Dead Lithium” Formation and Mitigation Strategies in Anode-Free Li-Metal Batteries","authors":"Mozaffar Abdollahifar, Andrea Paolella","doi":"10.1002/batt.202400505","DOIUrl":"https://doi.org/10.1002/batt.202400505","url":null,"abstract":"<p>Thin lithium-metal foil is a promising anode material for next-generation batteries due to its high theoretical specific capacity and low negative potential. However, safety issues linked to dendrite growth, low-capacity retention, and short cycle life pose significant challenges. Also, it has excess energy that must be minimized in order to reduce the battery costs. To limit excess lithium, practical lithium metal batteries need a negative-to-positive electrode ratio as close to 1 : 1 as possible, which can be achieved through limiting excess lithium or using an “anode-free” metal battery design. However, both designs experience fast capacity fade due to the irreversible loss of active lithium in the cell, caused by the formation of the solid electrolyte interphase (SEI), dendrite formation and “dead lithium,” – refers to lithium that has lost its electronic connection to the anode electrode or current collector. The presence of dead lithium in batteries negatively affects their capacity and lifespan, while also raising internal resistance and generating heat. Additionally, dead lithium encourages the growth of lithium dendrites, which poses significant safety hazards. Within this fundamental review, we thoroughly address the phenomenon of dead lithium formation, assessing its origins, implications on battery performance, and possible strategies for mitigation. The transition towards environmentally friendly and high-performance metal batteries could be accelerated by effectively tackling the challenge posed by dead lithium.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weidong Zhang, Yaokang Lv, Wei Xiong, Lihua Gan, Mingxian Liu
{"title":"Inorganic-Organic Composite Cathode Materials for Aqueous Zinc Ion Batteries","authors":"Weidong Zhang, Yaokang Lv, Wei Xiong, Lihua Gan, Mingxian Liu","doi":"10.1002/batt.202400507","DOIUrl":"https://doi.org/10.1002/batt.202400507","url":null,"abstract":"<p>As potential candidates for large-scale energy storage systems, aqueous zinc-ion batteries (AZIBs) have attracted more and more attention from researchers and investors. Tremendous efforts have been devoted to develop high-efficient cathode materials for improving comprehensive performances of AZIBs. Recently reported inorganic-organic composite (IOC) cathode materials exhibited excellent electrochemical performance and were generally superior to corresponding inorganic or organic cathode materials. This paper presents a timely review on recent progresses and challenges in IOCs for AZIBs. Preparation strategies of IOCs have been elaborated and categorized, recent advances and main working mechanisms of IOCs are exhibited with a focus on the analysis methods for mechanism studies, outlooks and challenges of IOC cathodes for AZIBs are outlined to guide their future development.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anjali V Nair, Dona Susan Baji, Shantikumar Nair, Dhamodaran Santhanagopalan
{"title":"Ti3C2Tx MXene Electrode-Electrolyte Interface Reactions at Different Stages of Charge/Discharge in Lithium and Sodium Half-Cells","authors":"Anjali V Nair, Dona Susan Baji, Shantikumar Nair, Dhamodaran Santhanagopalan","doi":"10.1002/batt.202400493","DOIUrl":"https://doi.org/10.1002/batt.202400493","url":null,"abstract":"<p>Energy storage technologies necessitates efficient, cost effective, and durable storage systems like Li-ion batteries (LIBs), with high energy density. Emerging 2D materials like MXenes have become significant for battery applications. Herein, titanium carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) synthesized and lattice engineered via -OH surface terminations removal by thermal processing is well explained. The synthesized samples were subjected to annealing at 250 and 500 °C. All the samples were characterized using XRD, TEM, XPS, etc. Subsequently, they were tested in the half-cell configuration for both lithium and sodium ion batteries (NIBs). It is observed that the best performance for lithium-ion storage capacity was 200 mAh/g at 50 mA/g and 125 mAh/g at the same specific current for sodium-ion storage for the 500 °C processed sample. However, for both the systems the cycling stability was exceptional maintaining high retention till the end of 1000 cycles. To establish the performance, electrochemical impedance and ex situ XPS results at different voltage of 1<sup>st</sup> charge/discharge were correlated for the best sample. Thus, providing information that is unavailable in the literature on MXene-electrolyte interactions, kinetics and the chemical nature of solid-electrolyte interface layer for both lithium and sodium-ion batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143633121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}