Sodium Manganese Hexacyanoferrate: Characterization as Sodium-Ion Battery Cathode Material, Full Cell Cycling with Hard Carbon and Post-Mortem Analyses

IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY
Sebastian Büchele, Valeriu Mereacre, Nicole Bohn, Pirmin Stüble, Xuebin Wu, Noah Keim, Ruochen Xu, Holger Geßwein, Wenzhe Sun, Grigor Vrhovac, Michael Pordzik, Thomas Bergfeldt, Sylvio Indris, Werner Bauer, Helmut Ehrenberg, Joachim R. Binder
{"title":"Sodium Manganese Hexacyanoferrate: Characterization as Sodium-Ion Battery Cathode Material, Full Cell Cycling with Hard Carbon and Post-Mortem Analyses","authors":"Sebastian Büchele,&nbsp;Valeriu Mereacre,&nbsp;Nicole Bohn,&nbsp;Pirmin Stüble,&nbsp;Xuebin Wu,&nbsp;Noah Keim,&nbsp;Ruochen Xu,&nbsp;Holger Geßwein,&nbsp;Wenzhe Sun,&nbsp;Grigor Vrhovac,&nbsp;Michael Pordzik,&nbsp;Thomas Bergfeldt,&nbsp;Sylvio Indris,&nbsp;Werner Bauer,&nbsp;Helmut Ehrenberg,&nbsp;Joachim R. Binder","doi":"10.1002/batt.202500015","DOIUrl":null,"url":null,"abstract":"<p>Sodium manganese hexacyanoferrate Na<sub>2</sub>Mn[Fe(CN)<sub>6</sub>] (NaMn<i>HCF</i>) is a promising cathode material for sodium-ion batteries, owing to its voltage profile similar to that of lithium iron phosphate (LFP) and its use of abundant, inexpensive resources. This study presents full cell cycling data for NaMn<i>HCF</i> against hard carbon (HC) anodes with various common carbonate-based electrolytes across different voltage windows. Post-mortem analyses indicate that, in addition to NaMn<i>HCF</i> degradation, Na<sup>+</sup>-ion inventory loss significantly contributes to capacity decline during cycling. Surprisingly, an ICP-OES analysis of the post-mortem anodes show that the correct electrolyte choice can entirely prevent the commonly cited manganese dissolution of NaMn<i>HCF</i> during cycling. This work also highlights methods for characterizing and processing NaMn<i>HCF</i> and the broader Prussian White family of materials, helping to introduce these materials to a wider audience. Finally, a comparison between NaMn<i>HCF</i>/HC and LFP/graphite is provided, examining both cost and electrochemical performance.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202500015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202500015","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium manganese hexacyanoferrate Na2Mn[Fe(CN)6] (NaMnHCF) is a promising cathode material for sodium-ion batteries, owing to its voltage profile similar to that of lithium iron phosphate (LFP) and its use of abundant, inexpensive resources. This study presents full cell cycling data for NaMnHCF against hard carbon (HC) anodes with various common carbonate-based electrolytes across different voltage windows. Post-mortem analyses indicate that, in addition to NaMnHCF degradation, Na+-ion inventory loss significantly contributes to capacity decline during cycling. Surprisingly, an ICP-OES analysis of the post-mortem anodes show that the correct electrolyte choice can entirely prevent the commonly cited manganese dissolution of NaMnHCF during cycling. This work also highlights methods for characterizing and processing NaMnHCF and the broader Prussian White family of materials, helping to introduce these materials to a wider audience. Finally, a comparison between NaMnHCF/HC and LFP/graphite is provided, examining both cost and electrochemical performance.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

六氰高铁酸锰钠:作为钠离子电池正极材料的表征,硬碳全电池循环和事后分析
六氰高铁酸锰钠(Na2Mn[Fe(CN)6])具有与磷酸铁锂(LFP)相似的电压谱和丰富、廉价的资源,是一种很有前途的钠离子电池正极材料。本研究提供了NaMnHCF在不同电压窗下对硬碳(HC)阳极和各种常见碳酸盐基电解质的全电池循环数据。事后分析表明,除了NaMnHCF降解外,Na+离子库存损失也是循环过程中容量下降的重要原因。令人惊讶的是,事后阳极的ICP-OES分析表明,正确的电解质选择可以完全防止NaMnHCF在循环过程中常见的锰溶解。这项工作还强调了表征和处理NaMnHCF和更广泛的普鲁士白色材料家族的方法,有助于将这些材料介绍给更广泛的受众。最后,比较了纳米nhcf /HC和LFP/石墨的成本和电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信