Batteries & Supercaps最新文献

筛选
英文 中文
Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries 锂装饰石墨二炔纳米片:非水锂电池电极材料的理论研究
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-14 DOI: 10.1002/batt.202400514
M. J. Jiménez, J. Juan, M.S. Sandoval, P. Bechthold, P. V. Jasen, E. A. González, A. Juan
{"title":"Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries","authors":"M. J. Jiménez,&nbsp;J. Juan,&nbsp;M.S. Sandoval,&nbsp;P. Bechthold,&nbsp;P. V. Jasen,&nbsp;E. A. González,&nbsp;A. Juan","doi":"10.1002/batt.202400514","DOIUrl":"https://doi.org/10.1002/batt.202400514","url":null,"abstract":"<p>In this work, Density Functional Theory (DFT) is used to study pristine and defective GDY. We investigate the effect of Li atom adsorption on the electronic and structural properties of this 2D material. In both cases, the Li atom is located at the corner of the triangular-like pore (H1), but with a slight shift for the defective system. In the perfect system, the Li−C bond distances range from 2.289 Å to 2.461 Å, while in the defective case, they range from 2.237 Å to 3.184 Å. In the perfect case, the GDY−Li system becomes metallic and the Li 2 s states are stabilized. Charge transfer to the surfaces occurs near the vicinity of the Li atom. The C vacancy generates new C=C bonds similar to double bonds, enhancing the interaction with Li through strong conjugation. After Li adsorption, the sum of bond order for all the C atoms increases in both structures, from 0.4 % to 6 %. The Li storage capacity without significant restructuring is six Li atoms. When the atom concentration increases, the OCV values for Li decrease from 0.93 V to 0.23 V. For defective GDY, the specific capacity is 788 mAhg<sub>−1</sub>, which is slightly higher than for pristine case.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Runaway of Na-Ion Batteries with Na3V2O2(PO4)2F Cathodes
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-14 DOI: 10.1002/batt.202400386
Tatiana K. Zakharchenko, Dmitriy I. Nikiforov, Georgiy D. Serdyukov, Pavel V. Komissarov, Mikhail O. Shkuratov, Alexander V. Dzuban, Grigorii P. Lakienko, Yuriy A. Gordienko, Lada V. Yashina, Daniil M. Itkis
{"title":"Thermal Runaway of Na-Ion Batteries with Na3V2O2(PO4)2F Cathodes","authors":"Tatiana K. Zakharchenko,&nbsp;Dmitriy I. Nikiforov,&nbsp;Georgiy D. Serdyukov,&nbsp;Pavel V. Komissarov,&nbsp;Mikhail O. Shkuratov,&nbsp;Alexander V. Dzuban,&nbsp;Grigorii P. Lakienko,&nbsp;Yuriy A. Gordienko,&nbsp;Lada V. Yashina,&nbsp;Daniil M. Itkis","doi":"10.1002/batt.202400386","DOIUrl":"https://doi.org/10.1002/batt.202400386","url":null,"abstract":"<p>The metal-ion battery manufacturing growth rates increase attention to the safety issues. For promising sodium-ion batteries, this topic has been studied in much less detail than for the lithium-ion ones. Here, we explored the thermal runaway process of Na-ion pouch cells with the Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F (NVOPF)-based cathode. The thermal runaway onset temperature for such cells is noticeably higher than that for the NMC-based LIBs. We show that thermal runaway is triggered by the anode and the separator decomposition rather than by the processes at the cathode. The composition of the gas mixture released during thermal runaway process is similar to that for Li-ion batteries. The results suggest that sodium-ion batteries based on polyanionic cathodes can pave the way to safer metal-ion energy storage technologies.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low Temperature and Rapid Synthesis of Li-Rich Li(Li0.17Mn0.83)2O4 Spinel Cathodes Derived from Metal-Organic Frameworks for Lithium-Ion Batteries 低温快速合成用于锂离子电池的金属有机框架富锂 Li(Li0.17Mn0.83)2O4 尖晶石阴极
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-14 DOI: 10.1002/batt.202400446
Ang Li, Ziqi Wang, Meihui Yu, Ze Chang
{"title":"Low Temperature and Rapid Synthesis of Li-Rich Li(Li0.17Mn0.83)2O4 Spinel Cathodes Derived from Metal-Organic Frameworks for Lithium-Ion Batteries","authors":"Ang Li,&nbsp;Ziqi Wang,&nbsp;Meihui Yu,&nbsp;Ze Chang","doi":"10.1002/batt.202400446","DOIUrl":"https://doi.org/10.1002/batt.202400446","url":null,"abstract":"<p>Li-rich spinel materials (Li<sub>1+<i>x</i></sub>Mn<sub>2−<i>x</i></sub>O<sub>4</sub>) have shown promise for lithium-ion batteries. Nevertheless, the preparation of Li<sub>1+<i>x</i></sub>Mn<sub>2−<i>x</i></sub>O<sub>4</sub> faces significant challenges due to the difficulty in achieving a balance between well-crystallized phases and stoichiometric chemistry. Moreover, the synthesis process is highly sensitive to calcination temperature and time, making it susceptible to phase transformations. Therefore, the rational selection of precursors and corresponding calcination procedures is absolutely essential. Herein, we make full use of the nature of metal-organic frameworks (MOFs) to achieve phase-controlled synthesis of Li(Li<sub>0.17</sub>Mn<sub>0.83</sub>)<sub>2</sub>O<sub>4</sub> (LMO−F) spinel cathodes in 8 minutes at 500 °C. The composition and structural evolution during the pyrolysis process were systematically investigated to clarify the relationship between precursors and derivatives. Notably, the LMO−F achieved good electrochemical performance with 100.4 mAh g<sup><b>−</b>1</sup> at 50 mA g<sup><b>−</b>1</sup> after 100 cycles.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Tailored Hydrocarbon-Based Pentablock Copolymer Membranes for Sodium-Polysulfide Flow Batteries
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-10 DOI: 10.1002/batt.202400401
Michelle Lehmann, Tomonori Saito, Mohamed Kamaludeen, Guang Yang
{"title":"Development of Tailored Hydrocarbon-Based Pentablock Copolymer Membranes for Sodium-Polysulfide Flow Batteries","authors":"Michelle Lehmann,&nbsp;Tomonori Saito,&nbsp;Mohamed Kamaludeen,&nbsp;Guang Yang","doi":"10.1002/batt.202400401","DOIUrl":"https://doi.org/10.1002/batt.202400401","url":null,"abstract":"<p>Long-duration energy storage (LDES) technologies are pivotal for the adoption of renewables like wind and solar. Non-aqueous redox flow batteries (NARFBs) with a sodium-polysulfide hybrid system feature high energy density independent of power density, yet face challenges with polysulfide shuttling. This study investigates a hydrocarbon-based penta-block copolymer membrane, Nexar, to mitigate crossover effects by balancing TFSI conversion and their crosslink density. The membranes are annealed to induce crosslinking for reducing electrolyte uptake and enhancing mechanical stability while demonstrating excellent ionic conductivity. The hydrocarbon-based membranes address environmental concerns associated with perfluoroalkyl substances and improve the performance and durability of NARFBs. Our findings suggest that annealed Nexar membranes with tailored TFSI functionality offer a scalable, cost-effective solution for enhancing the efficiency of high-capacity energy storage systems, pivotal for grid integration of renewable sources.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing High-Performance Zn-Iodine Batteries with CuI-PVP Composite Layer Coated Zn Anodes
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-10 DOI: 10.1002/batt.202400427
Rui Zhang, Xiangyu Liu, Xiaojing Wu, Tan Guo, Shan Yun, Lingyu Du, Litao Kang
{"title":"Constructing High-Performance Zn-Iodine Batteries with CuI-PVP Composite Layer Coated Zn Anodes","authors":"Rui Zhang,&nbsp;Xiangyu Liu,&nbsp;Xiaojing Wu,&nbsp;Tan Guo,&nbsp;Shan Yun,&nbsp;Lingyu Du,&nbsp;Litao Kang","doi":"10.1002/batt.202400427","DOIUrl":"https://doi.org/10.1002/batt.202400427","url":null,"abstract":"<p>Aqueous zinc-iodine (Zn-I<sub>2</sub>) batteries featuring abundant raw materials, inherent safety, excellent cost competitiveness and environmental benignity have been identified as one kind of important electrochemical energy storage devices. However, these batteries always suffer from inferior electrochemical performance, because of dendrite growth and corrosion/passivation of the anodes. Herein, a copper iodide-polyvinylpyrrolidone (CuI-PVP) composite layer is proposed to suppress the parasitic reactions and protect the Zn anodes. In this layer, the CuI can spontaneously react with metallic Zn and convert into Cu and Cu<sub>5</sub>Zn<sub>8</sub> (2<i>CuI</i>+<i>Zn</i>→2<i>Cu</i>+<i>ZnI<sub>2</sub></i>; 5<i>Cu</i>+8<i>Zn</i>→<i>Cu<sub>5</sub>Zn<sub>8</sub></i>). The highly zincophilic Cu and Cu<sub>5</sub>Zn<sub>8</sub>, as heterogeneous seeds, can guide the uniform Zn nucleation and deposition, while alleviating corrosion of the Zn anodes. At the same time, the iodide species releasing from the composite layer can be oxidized and deposited on the cathodes, contributing additional capacity. As a result, the symmetric cell prepared with the CuI-PVP@Zn anodes demonstrates a long cycling lifetime of 1400 hours at 1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>. Under an even higher current density of 5 mA cm<sup>−2</sup>, the CuI-PVP@Zn cell can still stably work for more than 660 hours. The practical application of this CuI-PVP@Zn electrode has been further demonstrated in Zn-I<sub>2</sub> full batteries, which achieve 60 % higher specific capacity than the untreated ones (251.4 vs. 157.1 mAh g<sup>−1</sup> after 2800 cycles).</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating and Unraveling Electrochemical Behavior of Hierarchically-Densifying Mesoporous Apocynum Carbon for High performance Supercapacitor 调控并揭示用于高性能超级电容器的分层致密化介孔狎鱼碳的电化学行为
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-10 DOI: 10.1002/batt.202400450
Qijun Tong, Zhihao Zhang, Qitian Luo, Kai Gu, Weiqing Yang
{"title":"Regulating and Unraveling Electrochemical Behavior of Hierarchically-Densifying Mesoporous Apocynum Carbon for High performance Supercapacitor","authors":"Qijun Tong,&nbsp;Zhihao Zhang,&nbsp;Qitian Luo,&nbsp;Kai Gu,&nbsp;Weiqing Yang","doi":"10.1002/batt.202400450","DOIUrl":"https://doi.org/10.1002/batt.202400450","url":null,"abstract":"<p>The commercial carbon-based supercapacitor with high power ability (~5 kW kg<sup>−1</sup>) is still unable to fulfill the superhigh power requirement of specific power-type equipments (&gt;20 kW kg<sup>−1</sup>), such as rail transit facilities, electromagnetic and laser equipment. To unravel the structure-activity relationship and electrochemical behavior of power-type densifying carbon is a key to overcome the contradiction of the suitable mesoporous ratio and highly-densifying features toward the superhigh power requirement. Here, we built the hierarchically-densifying mesoporous apocynum carbon (HDMC) with optimized mesoporous ratio by hierarchical activation method. More importantly, both the isothermal desorption/adsorption and high-pressure mercury intrusion porosimetry methods were employed to synergistically uncover the microscopic surface carbon network stacking mechanism and the macroscopic carbon skeleton densification assembly mechanism. The highly-densifying skeleton features and high mesoporous ratio properties were proved to be co-existed in HDMC, which is in favour of rapidly ion/electron transferring toward electrochemically-improving power behavior of HDMC. A combination of high tap density (0.387 g cm<sup>−3</sup>) and ideal microporous-mesoporous system (23.1 % proportion of mesoporous) have taken this HDMC to provide a super-high power density (33.5 kW kg<sup>−1</sup>) and a high volume power density (9.37 kW L<sup>−1</sup>) for HDMC-based supercapacitor, more than those of commercial YP-50F (14.9 kW kg<sup>−1</sup> @ 4.63 kW L<sup>−1</sup>). Therefore, this work provides a synergistic strategy to incorporate the properties of mesoporous and densifying, and reveals its electrochemical behavior toward the further application of power-type supercapacitors.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Electrolyte Salts in Non-Flammable Triethyl Phosphate for Sodium-Ion Batteries
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-08 DOI: 10.1002/batt.202400489
Wessel W. A. Van Ekeren, Lasse Dettmann, Yonas Tesfamhret, Andrew J. Naylor, Reza Younesi
{"title":"Investigation of Electrolyte Salts in Non-Flammable Triethyl Phosphate for Sodium-Ion Batteries","authors":"Wessel W. A. Van Ekeren,&nbsp;Lasse Dettmann,&nbsp;Yonas Tesfamhret,&nbsp;Andrew J. Naylor,&nbsp;Reza Younesi","doi":"10.1002/batt.202400489","DOIUrl":"https://doi.org/10.1002/batt.202400489","url":null,"abstract":"<p>Five different electrolyte salts, namely NaBF<sub>4</sub>, NaClO<sub>4</sub>, NaDFOB, NaFSI and NaPF<sub>6</sub>, were evaluated in non-flammable triethyl phosphate (TEP) based electrolyte solutions in sodium-ion full-cells using high-mass loading Prussian white and hard carbon electrodes. Their impact on the viscosity, ionic conductivity and solvation structure was analyzed, revealing that NaFSI-based electrolytes exhibited a stronger interaction with TEP and less ion-pairing than the other salts, resulting in the highest ionic conductivity at a concentration of 0.8 <i>m</i> (mol/kg). Galvanostatic cycling experiments showed that none of the electrolyte salts dissolved in TEP forms an efficient passivation layer. However, adding 1 wt.% vinylene carbonate (VC) significantly improved cycling performance for the cells with NaBF<sub>4</sub>, NaDFOB or NaFSI, but not with NaClO<sub>4</sub> or NaPF<sub>6</sub>. Additionally, NaFSI in TEP with 1 wt.% VC electrolyte solution showed minimal gas evolution during the formation cycling (&lt;8 mbar). In a 1 Ah multilayer pouch cell, 0.8 <i>m</i> NaFSI in TEP with 1 wt.% VC showed promising results with 88 % capacity retention after 200 cycles. X-ray photoelectron spectroscopy analysis indicated that the addition of VC results in the formation of a thin SEI and minimized TEP decomposition, particularly for 0.8 m NaFSI TEP with 1 wt.% VC. This study lays the groundwork for safer liquid electrolytes and integrating them into near-to-commercial cell setups.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Step Electrodeposition of Iron Oxyhydroxide Onto 3D Porous Graphene Substrates for on Chip Asymmetric Micro-Supercapacitors
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-08 DOI: 10.1002/batt.202400431
Filipe Braga, Gabriel Casano, Manel Sonni, Harry Finch, Vinod R. Dhanak, Marco Caffio, Laurence J. Hardwick
{"title":"One-Step Electrodeposition of Iron Oxyhydroxide Onto 3D Porous Graphene Substrates for on Chip Asymmetric Micro-Supercapacitors","authors":"Filipe Braga,&nbsp;Gabriel Casano,&nbsp;Manel Sonni,&nbsp;Harry Finch,&nbsp;Vinod R. Dhanak,&nbsp;Marco Caffio,&nbsp;Laurence J. Hardwick","doi":"10.1002/batt.202400431","DOIUrl":"https://doi.org/10.1002/batt.202400431","url":null,"abstract":"<p>Electrochemical capacitors based on redox active materials can achieve greater capacitance values than traditional electric double layer composites. Herein, electrodeposition of iron oxyhydroxide from a mildly acidic acetate precursor is reported. The one-step deposition resulted in a submicron film composed of FeOOH phase, which was confirmed via Raman and x-ray photoelectron spectroscopy. The capacitance increased linearly with loading amount and achieved a maximum at 1600 mC deposition with 120 mF cm<sup>−2</sup> at 25 mV s<sup>−1</sup> after which the film became more resistive, limiting electrolyte access to the porous graphene substrate. The deposited FeOOH demonstrated promising rate capability and good cycling stability, without phase changes, retaining 82 % of the initial capacitance after 5000 consecutive charge/discharge cycles. The charge storage mechanism of FeOOH was determined via <i>in situ</i> Raman spectroscopy, which followed reversible iron oxygen vibration changes upon cycling which become more intense upon reduction as a result of sodium ion intercalation. Furthermore, an asymmetric configuration full cell combining FeOOH/MnO<sub>2</sub> allowed the working voltage to be extended to 2 V, maintaining an ideal capacitor behaviour, and achieving a maximum energy and power density of 21 μWh cm<sup>−2</sup> and 2.5 mW cm<sup>−2</sup> respectively.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Set-Up for Measurement of Half-Cell- and Over-Potentials of Flow Batteries During Operation
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-08 DOI: 10.1002/batt.202400394
Gabriel Gonzalez, Prof. Pekka Peljo
{"title":"Experimental Set-Up for Measurement of Half-Cell- and Over-Potentials of Flow Batteries During Operation","authors":"Gabriel Gonzalez,&nbsp;Prof. Pekka Peljo","doi":"10.1002/batt.202400394","DOIUrl":"https://doi.org/10.1002/batt.202400394","url":null,"abstract":"<p>The study of flow batteries (FBs) requires the development of tools able to evaluate their performance during operation in a reliable and simple way. In this work, we present an experimental set-up that allows the on-line monitoring of the half-cells state of charge and apparent overpotentials on the positive and negative electrodes during battery operation. These measurements are feasible by using additional flow cells that include a reference electrode on each side. We used the experimental set-up to study the performance of the vanadium system as well as a previously reported stable organic couple. The studies consisted on short cycling operation at different current densities and polarization curves at different flow rates and states of charge. By confirming previous results obtained for vanadium-FBs and extending the analysis to further systems, we demonstrated that this approach provides a reliable deeper insight into the battery performance and the processes taking place during operation.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 2","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400394","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024) 封面专题:普鲁士蓝类似物能否成为推动后锂电池发展的圣杯?(电池与超级电容器 10/2024)
IF 5.1 4区 材料科学
Batteries & Supercaps Pub Date : 2024-10-07 DOI: 10.1002/batt.202481002
Mecaelah S. Palaganas, Jayson S. Garcia, Giancarlo Dominador D. Sanglay, Lora Monique E. Sapanta, Dr. Lawrence A. Limjuco, Prof. Joey D. Ocon
{"title":"Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)","authors":"Mecaelah S. Palaganas,&nbsp;Jayson S. Garcia,&nbsp;Giancarlo Dominador D. Sanglay,&nbsp;Lora Monique E. Sapanta,&nbsp;Dr. Lawrence A. Limjuco,&nbsp;Prof. Joey D. Ocon","doi":"10.1002/batt.202481002","DOIUrl":"https://doi.org/10.1002/batt.202481002","url":null,"abstract":"<p><b>The Cover Feature</b> showcases the diverse applications of Prussian Blue analogue (PBA)–based post-lithium batteries (PLBs). The circles on the left of the battery depict their current use in supporting the transition to clean energy. The circles on the right highlight potential future industries that PBA-based PLBs could transform, including aerospace, electronics, and mobility applications. The development of PBA cathodes is poised to be a significant breakthrough in enhancing PLBs, unlocking a wide array of applications. More information can be found in the Review by J. D. Ocon and co-workers (DOI: 10.1002/batt.202400280).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 10","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信