IEEE Photonics Journal最新文献

筛选
英文 中文
Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA 利用硅基 IC-TROSA 实现复值 CNN 非线性均衡,使 36-Tbit/s (45×800-Gbit/s) 波分复用传输超过 3150 Km
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-12-04 DOI: 10.1109/JPHOT.2024.3510791
Yuhan Gong;Xiaoshuo Jia;Ying Zhu;Kailai Liu;Ming Luo;Jin Tao;Zhixue He;Chao Li;Zichen Liu;Yan Li;Jian Wu;Chao Yang
{"title":"Complex-Valued CNN Nonlinear Equalization Enabled 36-Tbit/s (45×800-Gbit/s) WDM Transmission Over 3150 Km Using Silicon-Based IC-TROSA","authors":"Yuhan Gong;Xiaoshuo Jia;Ying Zhu;Kailai Liu;Ming Luo;Jin Tao;Zhixue He;Chao Li;Zichen Liu;Yan Li;Jian Wu;Chao Yang","doi":"10.1109/JPHOT.2024.3510791","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3510791","url":null,"abstract":"The growing Internet traffic urgently needs large-capacity and cost-effective optical transmissions. To maintain system performance under low-cost conditions, the silicon-based integrated coherent transmit and receive optical sub-assembly (IC-TROSA) and the complex-valued convolutional neural network (CVCNN) algorithm provide an effective solution for high-capacity and long-distance WDM optical transmission. The proposed CVCNN can improve the system performance under nonlinear damage conditions, which fully considers the orthogonality of IQ signals in this paper. This algorithm exhibits different equalization performances for 64QAM signals under various encoding schemes considering 20%-overhead, achieving up to 2dB maximum decrease in the required optical signal-to-noise ratio at the optical back-to-back case. Regarding transmission distance, employing CVCNN extends the maximum reach from 3500 km to 3850 km. The paper also demonstrates the application of CVCNN in WDM systems, enhancing system performance across different WDM encoding schemes. Finally, the experiment verified that CVCNN requires fewer computational resources than real-valued convolutional neural networks (RVCNN).","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777400","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pure Disturbance Sliding-Mode Feedback Control Based on Disturbance Observation for CCD-Assisted Line-of-Sight Stabilization 基于扰动观测的ccd辅助视距稳定纯扰动滑模反馈控制
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-12-04 DOI: 10.1109/JPHOT.2024.3511573
Yong Luo;Yi Cheng;Yongmei Huang;Qiongyan Wu;Dong He;Ge Ren;Guan Wang;Shi Zheng
{"title":"Pure Disturbance Sliding-Mode Feedback Control Based on Disturbance Observation for CCD-Assisted Line-of-Sight Stabilization","authors":"Yong Luo;Yi Cheng;Yongmei Huang;Qiongyan Wu;Dong He;Ge Ren;Guan Wang;Shi Zheng","doi":"10.1109/JPHOT.2024.3511573","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3511573","url":null,"abstract":"Excellent disturbance rejection ability is essential for a photoelectric tracking system (PTS) based on the Charge-Couple Device (CCD) sensor, which is a premise guarantee for obtaining highly accurate tracking, especially under the condition of moving carriers with intense disturbances. The feedforward control method based on disturbance estimated from the system model output and sensor output is currently a commonly used strategy for disturbance compensation due to its ability to directly counteract the disturbances. This disturbance feedforward compensation method behaves sensitively in case of model mismatch caused by internal disturbances, which may lead to a significant reduction in the disturbance compensation effect or even cause system instability. In this paper, unlike disturbance feedforward compensation, a pure disturbance sliding-mode feedback control (DSMFBC) based on disturbance observation without additional sensors is proposed, ensuring faster and precise compensation for disturbance. In case of model mismatch, the observed disturbance is used to build the disturbance feedback control to maintain a more efficient disturbance compensation through the robustness that feedback naturally possesses. To achieve a stronger anti-disturbance capability, a sliding-mode nonlinear control method is used to design the control law. The experimental setup of PTS based on the fast-steering mirror (FSM) demonstrates that the method has better dynamic performance and disturbance rejection ratio.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-9"},"PeriodicalIF":2.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778198","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design Principles and Performance Limitation of InGaN Nanowire Photonic Crystal Micro-LEDs InGaN 纳米线光子晶体微型 LED 的设计原理和性能限制
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-12-04 DOI: 10.1109/JPHOT.2024.3511344
Yakshita Malhotra;Xianhe Liu;Zetian Mi
{"title":"Design Principles and Performance Limitation of InGaN Nanowire Photonic Crystal Micro-LEDs","authors":"Yakshita Malhotra;Xianhe Liu;Zetian Mi","doi":"10.1109/JPHOT.2024.3511344","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3511344","url":null,"abstract":"While micro-LEDs are crucial for ultrahigh resolution micro-displays, the efficiency of currently reported micro-LEDs degrades dramatically with decreasing size. Recently, the bottom-up nanowire approach has shown promise to break the efficiency bottleneck of this size effect. In this article, we investigated the design of nanowire photonic crystal structure for micro-LED applications and revealed its correlation with the Purcell effect. Key performance characteristics including efficiency, emission directionality, and spectral linewidth are thoroughly studied. For an LED structure with low internal quantum efficiency (IQE) of 10% due to high non-radiative recombination, an enhancement of ∼30% is found viable by using a properly designed photonic crystal. High emission directionality and a narrow spectral linewidth (∼ 5 nm) can be obtained with 60% of the light being emitted within a 20° acceptance angle.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777399","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Bends and Micro Ring Resonators in Silicon Nitride Photonic Waveguides for C-Band c波段氮化硅光子波导中的先进弯管和微环谐振器
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-11-29 DOI: 10.1109/JPHOT.2024.3509312
Jeong Hwan Song;Tangla D. Kongnyuy;Mathias Prost;Aritrio Bandyopadhyay;Sarvagya Dwivedi;Diego Carbajal Altamirano;Cian Cummins;Sandeep Seema Saseendran;Philippe Helin;Joost Brouckaert;Marcus Dahlem
{"title":"Advanced Bends and Micro Ring Resonators in Silicon Nitride Photonic Waveguides for C-Band","authors":"Jeong Hwan Song;Tangla D. Kongnyuy;Mathias Prost;Aritrio Bandyopadhyay;Sarvagya Dwivedi;Diego Carbajal Altamirano;Cian Cummins;Sandeep Seema Saseendran;Philippe Helin;Joost Brouckaert;Marcus Dahlem","doi":"10.1109/JPHOT.2024.3509312","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3509312","url":null,"abstract":"We present the design and experimental evaluation of low-loss advanced bends in silicon nitride (SiN) waveguides for the C-band. The advanced bends, with a radius of 25 μm, exhibit a bending loss of approximately 0.025 dB per 90°, comparable to the loss of a circular bend with a radius of 50 μm. Consequently, the 25 μm radius advanced bend is proposed for routing in SiN photonic integrated circuits to reduce the overall footprint. Furthermore, the use of these advanced bends in micro ring resonators results in quality factors of 5.8 × 10\u0000<sup>3</sup>\u0000 and 5.5 × 10\u0000<sup>4</sup>\u0000, with relatively large free spectral ranges and extinction ratios for radii of 15 μm and 25 μm, respectively.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-5"},"PeriodicalIF":2.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10771684","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Volatile Reconfigurable Optical Digital Diffractive Neural Network Based on Phase Change Material 基于相变材料的非易失可重构光学数字衍射神经网络
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-11-28 DOI: 10.1109/JPHOT.2024.3508052
Qiaomu Hu;Jingyu Zhao;Chu Wu;Rui Zeng;Xiaobing Zhou;Shuang Zheng;Minming Zhang
{"title":"Non-Volatile Reconfigurable Optical Digital Diffractive Neural Network Based on Phase Change Material","authors":"Qiaomu Hu;Jingyu Zhao;Chu Wu;Rui Zeng;Xiaobing Zhou;Shuang Zheng;Minming Zhang","doi":"10.1109/JPHOT.2024.3508052","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3508052","url":null,"abstract":"Optical diffractive neural networks have sparked extensive research due to their low power consumption and high-speed capabilities in image processing. Here we propose and design a reconfigurable all-optical diffractive neural network structure with digital non-volatile optical neurons. The optical neurons are built with Sb\u0000<sub>2</sub>\u0000Se\u0000<sub>3</sub>\u0000 phase-change material and can switch between crystalline and amorphous states with no constant energy supply. Using three reconfigurable non-volatile digital diffractive layers and 10 photodetectors connected to a reconfigurable resistor network, our model achieves an accuracy of 94.46% in the handwritten digit recognition task. Moreover, the fabrication and assembly robustness of the proposed optical diffractive neural network is verified through full-vector diffractive simulation. Thanks to its reconfigurability and low energy supply, the digital optical diffractive neural network holds great potential to facilitate a programmable and low-power-consumption photonic processor for optical-artificial-intelligence.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770557","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation Between Recombination Dynamics and Quantum Barrier Thickness in InGaN-Based Micro-LEDs 基于ingan的微型led中复合动力学与量子势垒厚度的关系
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-11-27 DOI: 10.1109/JPHOT.2024.3506779
Mengyue Mo;Ying Jiang;Penggang Li;Zhiqiang Liu;Xu Yang;Weifang Lu;Jinchai Li;Kai Huang;Junyong Kang;Rong Zhang
{"title":"Correlation Between Recombination Dynamics and Quantum Barrier Thickness in InGaN-Based Micro-LEDs","authors":"Mengyue Mo;Ying Jiang;Penggang Li;Zhiqiang Liu;Xu Yang;Weifang Lu;Jinchai Li;Kai Huang;Junyong Kang;Rong Zhang","doi":"10.1109/JPHOT.2024.3506779","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3506779","url":null,"abstract":"To tackle the efficiency droop, we employed an epitaxial structure engineering approach and utilized SimuLED software to thoroughly investigate the influence of the quantum barrier (QB) thickness on the performance of Micro-LEDs, and delve into the corresponding carrier transport behavior. The results demonstrate that the effect of QB thickness on the performance of Micro-LEDs is closely related to injection current density. Within the current density range of 0–30 A/cm\u0000<sup>2</sup>\u0000, a thicker QB layer leads to a higher internal quantum efficiency (IQE) for Micro-LEDs. Conversely, when the current density is in the range of 30–100 A/cm\u0000<sup>2</sup>\u0000, employing a thinner QB layer in the LED structure can yield higher IQE values. In addition, this work suggests that tunneling effects and Quantum Confined Stark Effect (QCSE) dominate at different current densities, resulting in an opposite dependency of IQE on QB thickness. Furthermore, our findings indicate that adjusting QB thickness can significantly affect both the peak external quantum efficiency (EQE) and peak current density of Micro-LEDs.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-7"},"PeriodicalIF":2.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767358","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Power 780 nm Broad-Area DFB Laser With Narrow Spectral Width 高功率780nm窄谱宽广域DFB激光器
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-11-27 DOI: 10.1109/JPHOT.2024.3507802
Lihong Zhu;Wuling Liu;Jiahan Qin;Ye Shao;Shaoyang Tan;Jun Wang
{"title":"High Power 780 nm Broad-Area DFB Laser With Narrow Spectral Width","authors":"Lihong Zhu;Wuling Liu;Jiahan Qin;Ye Shao;Shaoyang Tan;Jun Wang","doi":"10.1109/JPHOT.2024.3507802","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3507802","url":null,"abstract":"The 7xx nm laser diode is the core pump source for Diode Pumped Alkali Vapor Laser (DPAL). For these applications, high power and narrow spectral width are essential. Traditional Fabry-Pérot (FP) diode lasers can provide high continuous output power, but their spectral width is too broad for many applications. By burying a Bragg grating within the semiconductor, a narrow and temperature-stable spectrum can be achieved. In this paper, we investigate the factors limiting the power enhancement of distributed feedback (DFB) lasers and characterize the grown gratings using transmission electron microscopy. We discuss the effects of grating coupling strength, wavelength detuning, and oxygen contamination in the grating region on performance. Under optimized growth conditions, a high-performance 780 nm DFB laser based on InGaAsP/InGaP gratings has been developed, achieving a continuous output power exceeding 10 W, which is the highest power for a 780 nm DFB laser to date. The spectral linewidth (FWHM) is less than 0.5 nm, and the device maintains locking across the entire operating current and a wide temperature range.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769983","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical and Accurate Evaluation of Numerical Aperture and Beam Quality Factor in Photonic Crystal Fibers by Mechanical Learning 用机械学习方法实用准确地评价光子晶体光纤的数值孔径和光束质量因子
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-11-27 DOI: 10.1109/JPHOT.2024.3506622
Mengda Wei;Meisong Liao;Liang Chen;Yinpeng Liu;Wen Hu;Lidong Wang;Dongyu He;Tianxing Wang;Shizi Yu;Weiqing Gao
{"title":"Practical and Accurate Evaluation of Numerical Aperture and Beam Quality Factor in Photonic Crystal Fibers by Mechanical Learning","authors":"Mengda Wei;Meisong Liao;Liang Chen;Yinpeng Liu;Wen Hu;Lidong Wang;Dongyu He;Tianxing Wang;Shizi Yu;Weiqing Gao","doi":"10.1109/JPHOT.2024.3506622","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3506622","url":null,"abstract":"This paper presents a convolutional neural network (CNN) model, enhanced with the convolutional block attention module (CBAM), designed to accurately predict the beam quality factor M\u0000<sup>2</sup>\u0000, and numerical aperture (NA) of photonic crystal fibers. The integration of CBAM significantly improves the model's feature extraction capability by enabling it to focus on key features and filter out irrelevant information. Simulation results demonstrate that the model achieves a mean relative error of only 0.381% for M\u0000<sup>2</sup>\u0000 and 2.293% for NA, outperforming convolutional models without attention mechanisms. With a prediction time of approximately 7 ms, the model allows for rapid and efficient predictions of M\u0000<sup>2</sup>\u0000 and NA. Moreover, when the noise factor remains below 0.32, the model's prediction error shows minimal fluctuation, highlighting its robustness. Comparative experimental analysis further validates the model's effectiveness. This approach offers a reliable and efficient solution for fast, accurate measurement of M² and NA, with significant implications for the prediction and analysis of beam performance in various applications.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 1","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767412","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Ghost Imaging With Bessel Beam for Axial Objects 轴向物体贝塞尔光束计算鬼影成像
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-11-25 DOI: 10.1109/JPHOT.2024.3505913
Jingjing Wu;Zixuan Yang
{"title":"Computational Ghost Imaging With Bessel Beam for Axial Objects","authors":"Jingjing Wu;Zixuan Yang","doi":"10.1109/JPHOT.2024.3505913","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3505913","url":null,"abstract":"In ghost imaging (GI) techniques, if the illumination patterns used in the reconstruction algorithm do not match that incident on the object's surface, the reconstructed image will be blurred. Here, we propose a computational GI system based on Bessel beams (Bessel-GI). Owing to the diffraction-free property of Bessel beams, Bessel-GI can image objects at different, unknown axial positions. It can also image multiple objects at various axial positions and axially moving objects. Specifically, the depth information of the objects can be reflected in the image size. A change in the object's position will scale the Bessel-GI imaging result, and we provide a theoretical analysis of the scale factor. The experimental results demonstrate the feasibility and utility of Bessel-GI, as well as the accuracy of the scaling factor obtained from the theoretical analysis. Bessel-GI has potential applications in moving object GI and 3D-GI. Additionally, the combination of Bessel-GI with microscopy imaging can be effectively applied to non-axial scanning microscopic GI techniques.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-7"},"PeriodicalIF":2.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10766930","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-Compact 1 × 4 Optical Power Splitter Based on Variable-Length Segment Optimized Inverse Design 基于变长段优化反设计的超紧凑1 × 4光分路器
IF 2.1 4区 工程技术
IEEE Photonics Journal Pub Date : 2024-11-25 DOI: 10.1109/JPHOT.2024.3505893
Yongchen Wang;Hangming Fan;Zhe Yuan;Junlin Pan;Longquan Dai;Qi Yang;Mengfan Cheng;Ming Tang;Deming Liu;Lei Deng
{"title":"Ultra-Compact 1 × 4 Optical Power Splitter Based on Variable-Length Segment Optimized Inverse Design","authors":"Yongchen Wang;Hangming Fan;Zhe Yuan;Junlin Pan;Longquan Dai;Qi Yang;Mengfan Cheng;Ming Tang;Deming Liu;Lei Deng","doi":"10.1109/JPHOT.2024.3505893","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3505893","url":null,"abstract":"Fixed-length segment (FLS) optimization method offers a way to realize the high-efficiency analog inverse design of nanophotonic devices. However, due to the limitation of the variable dimensions and restricted search space, this method can hard to simultaneously achieve large bandwidth, compact size, and efficient performance when dealing with high-dimension design. Here, we propose a highly efficient variable-length segment (VLS) based inverse design method, aiming to solve complex analog inverse design and fully demonstrate the targeted performance. It divides the optimized region into several tapered segments of unequal length and inserts a subwavelength transition waveguide between each tapered segment, which can expand the search space of the algorithm, thus making it easier to obtain a better locally optimal solution. As typical complex proof-of-concept examples, a 1 × 4 power splitter on a silicon-on-insulator (SOI) platform is chosen to demonstrate the validity of our design paradigm. The simulation results show that, compared with the conventional FLS, VLS has about 4–5 times higher efficiency and obtains better optimization performance. In our experiment, the fabricated device has a compact footprint of 9.8 μm × 4.9 μm and is complementary metal oxide semiconductor (CMOS) compatible. The measured insertion loss and the uniformity are less than 0.58 dB and 0.8 dB, respectively. In addition, the tolerances to fabrication errors are also investigated. Our work may find important applications in the advanced design of future nanoscale high-quality optical devices.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信