Samuel M. Hörmann;Gandolf Feigl;Jakob W. Hinum-Wagner;Alexander Bergmann
{"title":"Rigorous Design Optimization of a Fiber-Enabled Polarimetric Waveguide Interferometer for Biosensing","authors":"Samuel M. Hörmann;Gandolf Feigl;Jakob W. Hinum-Wagner;Alexander Bergmann","doi":"10.1109/JPHOT.2024.3472896","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3472896","url":null,"abstract":"Integrated photonic sensors have gained significant attention for biosensing applications. An especially potent design is the polarimetric waveguide interferometer, which utilizes polarization diversity for effective self-referencing. However, its implementations are held back by the need for bulky free-space optics or unreliable waveguide junctions for polarization handling. To overcome these limitations, we propose a novel concept for a compact photonic system that employs edge couplers to excite both polarizations from an optical fiber and an in-line polarizer to obtain the phase information in the fiber-based readout. Additionally, we improve the waveguide design methodology to minimize the limit of detection through balancing sensitivity with optical loss. To this end, we create a unified perturbative approach based on atomic force microscopy and ellipsometry data to model sensitivity, surface-roughness-induced scattering, absorption, and radiation. We then incorporate the coupling efficiency into a figure of merit for the combined system. Thus, we optimize the geometry of a strip waveguide on a CMOS-foundry-sourced silicon nitride platform for biosensing. Through exhaustive screening of the design space, we discover that polarization diversity simultaneously leverages high sensitivity and low overlap with sidewall roughness. Further, we present designs that eliminate the phase signal from two major noise sources: thermal and bulk refractive index fluctuations. Finally, we provide design recommendations and achieve a 5.2-fold improvement over a comparable bimodal waveguide interferometer. Thus, our aim is to design a robust, compact, sensitive, and cost-effective polarimetric waveguide interferometer through an efficient concept and an optimized design.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-Line-of-Sight Target Tracking With a Single Time Multiplexed Channel","authors":"Xianmin Zheng;Tailin Li;Ke Ding;Yihan Luo","doi":"10.1109/JPHOT.2024.3471070","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3471070","url":null,"abstract":"Here we propose a non-line-of-sight (NLOS) tracking scheme using only one single-pixel single-photon channel. It is demonstrated that sending multiple beams with proper time delay enables multiplexing of multi-echoes of the hidden object in the single channel. Based on the multiplexed temporal histograms, we achieve a retrieval of the object's position with centimeter precision. The experiment of following the target's linear motion is also performed, proving that our technique can reliably track the moving object. This time multiplexing-based NLOS tracking scheme provides a simple way to reduce the numbers of the detecting channels, which may contribute to low-cost NLOS applications.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Optimization of Hg1-xCdxTe Photovoltaic Detectors Under Strong Illumination Considering Temperature and Wavelength Dependencies","authors":"Jiahui Chen;Wangyong Chen;Linlin Cai;Pengling Yang;Dahui Wang;Manling Shen;Xiangyang Li;Hui Qiao","doi":"10.1109/JPHOT.2024.3470871","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3470871","url":null,"abstract":"Currently, HgCdTe detectors are advancing towards very long wavelengths and room temperature operation. However, as operating temperatures and illumination intensity increase, the performance of these detectors deteriorates, evidenced by increased dark current, reduced responsivity and detectivity, and enhanced saturation effects. These limitations significantly hinder the application of detectors for strong illumination scenarios at room temperature. In this study, we utilize compositional gradients and array electrode designs to make better trade-offs among dark current, responsivity, and saturation characteristics of HgCdTe photovoltaic detectors under mid-wave and long-wave infrared conditions. We elucidate the underlying mechanisms from the perspectives of the responsive region and the non-photosensitive area, as well as carrier motion and recombination processes. The results indicate that increasing compositional gradients are beneficial for reducing dark current, while decreasing compositional gradients are advantageous for improving responsivity. Moreover, detectors with array electrodes design achieve a peak responsivity of 1.5 A/W under 200 W/cm\u0000<sup>2</sup>\u0000 (∼1.8 mW) at room temperature, which is three times higher than the pre-optimized structure. Additionally, the peak detectivity increased by more than 20%. These research findings provide guidance for the design of future HgCdTe detectors operating under strong injection levels and at various temperatures.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconfigurable MISO-VLC via Joint Light Source Identification and Localization Using a Receiver With Spatial LCD Filter","authors":"Andrej Harlakin;Jan Mietzner;Peter A. Hoeher","doi":"10.1109/JPHOT.2024.3469391","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3469391","url":null,"abstract":"This paper presents a novel concept for joint light source identification and localization (JLIL) with subsequent interference suppression using a liquid crystal display (LCD)-based receiver. The JLIL concept is particularly suitable for multiple-input single-output visible-light-communication settings, where an LCD-based receiver must be able to identify a desired light source before suppressing interfering ones. Given a basic visible-light-communication setup, in a first step modifications required both on the transmitter and the receiver side are identified. Subsequently, the concept for LCD-based JLIL is introduced, and its performance is illustrated by means of simulation results. In this context, intersymbol interference effects are investigated and a known ambiguity problem is overcome. Finally, results of an experimental verification are reported as a proof of concept. It is shown that the derived simulation model accurately predicts measurement results. The latter confirm a virtually error-free light source identification and precise localization within system accuracy range. Furthermore, an improved peak detection is reported. Signal-to-noise ratio measurements suggest good performance for up to \u0000<inline-formula><tex-math>$3 ,mathrm{m}$</tex-math></inline-formula>\u0000 using the developed hardware demonstrator.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-17"},"PeriodicalIF":2.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697281","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visible to Near-Infrared Light Integrated Photonic Components on PECVD and LPCVD SiN Platform","authors":"Sen Yang;Zuoqin Ding;Xiao Li;Xiao Luo;Shuhua Zhai;Xiujun Zheng;Bo Wang;He Li;Zhuo Deng;Qianshi Wang;Sarp Kerman;Chang Chen","doi":"10.1109/JPHOT.2024.3467310","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3467310","url":null,"abstract":"In this paper, we present our process design kits (PDKs) component performances for different wavelengths in the visible to near-infrared (VIS-NIR) range on Shanghai Industrial μTechnology Research Institute's (SITRI's) 200 mm silicon nitride (SiN) photonics platform. SiN waveguide platform has emerged as a promising technology due to its low optical loss, relatively high refractive index, and transparency across the VIS-NIR spectrum. The industrialization of SiN platforms requires matured PDKs. On SITRI's 200 mm SiN photonics platform, we developed PDKs using both Plasma-Enhanced Chemical Vapor Deposition (PECVD) and Low-Pressure Chemical Vapor Deposition (LPCVD) processes, with SiN layers of 180 nm and 150 nm thicknesses, respectively. The fabricated waveguides exhibit low propagation loss, ranging from 2.5 dB/cm to 0.34 dB/cm from 532 nm to 860 nm. Additionally, we present a low bending loss which is less than 0.06 dB/90° with a radius of 100 μm. Furthermore, the loss of the linear grating coupler (LGC) is less than 2.6 dB at 785 nm. We have also achieved low-loss splitters, including 1 × 2 multimode interference (MMI) coupler, and directional coupler (DC), with a minimum excess loss of 0.03 dB. Additionally, micro ring resonator with high quality (Q) factors of 146,000 has been demonstrated. Our work on developing these PDKs will open new opportunities for researchers and developers to design and fabricate advanced photonic devices on the SiN platform in SITRI's 200 mm fabrication line.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-7"},"PeriodicalIF":2.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10691934","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Phase Retrieval via Improved Binary Amplitude Modulation Masks","authors":"Chao Yang;Cheng Xu;Hui Pang;Jun Lan;Lixin Zhao;Song Hu;Wei Yan;Xianchang Zhu","doi":"10.1109/JPHOT.2024.3466565","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3466565","url":null,"abstract":"Conventional iterative phase retrieval suffers from an inherent phase ambiguity due to limited measurement intensity. Multimodal amplitude modulation introduces physical constraints to tackle the underdetermination challenge. However, the time overhead caused by mask switching slows down the imaging speed. To increase imaging speed, we report an accelerated coded phase retrieval method by optimizing modulation masks. Compared to existing methods that require at least four patterns as inputs, the proposed method requires only three mask modulations to robustly reconstruct complex objects. The transparent pixels of the two masks partially overlap, constituting a strong constraint on the objective function. An additional random mask increases the difference between diffraction intensity patterns and ensures that the algorithm converges. The proposed method of efficient modulation using pure amplitude elements may open the door to short-wavelength high-speed complex amplitude imaging. Numerical simulations and proof-of-principle experiments have verified the feasibility of this method.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689307","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryo Igarashi;Shin Kaneko;Yasutaka Kimura;Takuya Kanai;Jun-ichi Kani;Tomoaki Yoshida
{"title":"Scalability Study of All-Photonics Metro/ Access Network With Simultaneous Reception of Wavelength-Multiplexed Control and Main Signals","authors":"Ryo Igarashi;Shin Kaneko;Yasutaka Kimura;Takuya Kanai;Jun-ichi Kani;Tomoaki Yoshida","doi":"10.1109/JPHOT.2024.3461803","DOIUrl":"https://doi.org/10.1109/JPHOT.2024.3461803","url":null,"abstract":"Research on the all-photonics metro/access network is active as the next generation communication system. It aims to provide high-throughput, low-latency, low-power-consumption connections via end-to-end optical paths that directly link users without o/e/o conversion. One issue with realizing this network is how to implement the remote-control channel cost-effectively. In this work, we propose a cost-effective control signal transmission system based on auxiliary management and control channel (AMCC) and wavelength division multiplexing (WDM) technology. 25-Gbit/s non-return-to-zero (NRZ) 40 km transmission confirms the feasibility of the proposed system. The experiment comprehensively examines the influence that upstream/downstream control signals and main signals on different paths have on each other's receiver sensitivity. With the appropriate parameters, the penalty on the main signal's receiver sensitivity due to upstream/downstream control signals can be reduced to just 0.5 dB. The proposed method can realize cost-effective control channels in the all-photonics metro/access network with minimal sensitivity degradation.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-10"},"PeriodicalIF":2.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Low-Cost Approach to Diode-Pumped Ti:Sapphire Lasers With Watt-Level Output","authors":"Niall Simpson;Martin Lee;Alan J. Kemp","doi":"10.1109/JPHOT.2024.3463751","DOIUrl":"10.1109/JPHOT.2024.3463751","url":null,"abstract":"We report a continuous-wave Ti:sapphire laser with an output power of 1.03 W, achieved with two low-cost single-emitter diode pumps, both of blue wavelength (448 and 468 nm). Using a novel strategy of combining blue-wavelength pumping with a long, low-doping Ti:sapphire crystal, we maximise the available pump power while minimising deleterious effects associated with blue pump wavelengths, demonstrating Watt-level output powers.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-5"},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasmonic Mode Interference Effect Based Sensors","authors":"Neha Ahlawat;Awanish Pandey;Saurabh Mani Tripathi","doi":"10.1109/JPHOT.2024.3463008","DOIUrl":"10.1109/JPHOT.2024.3463008","url":null,"abstract":"We propose and theoretically analyze a novel sensor based on plasmonic mode interference in a one-dimensional degenerate n-doped silicon core waveguide. The waveguide supports both, the symmetric- as well as anti-symmetric surface plasmon polaritons (SPPs), with a large propagation constant difference between them, drastically miniaturizing the probe size to \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u0000100 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m. Our study reveals that the symmetric plasmonic mode has significant field localization in the sensing region as compared to the anti-symmetric plasmonic mode which has a large field localization in the substrate region. This makes the symmetric SPP considerably more suitable for bio/chemical sensing applications. The core mode projection technique with an optimized transverse offset between the lead-in waveguide and plasmonic waveguide has been used to couple appreciable power into the two SPP modes enhancing the extinction ratio of the transmission spectra. The estimated sensitivity of the sensor is \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u0000 3400 nm/RIU over biologically relevant refractive indices. Our study demonstrates the effectiveness of plasmonic mode interference in designing highly sensitive bio/chemical sensors with miniaturized probe length through careful design considerations. We also discuss the effect of temperature cross-sensitivity on the performance of the sensor and have presented a sensitivity matrix-based approach for the simultaneous detection of two perturbations using a single sensor probe. We have shown that using this sensitivity-matrix approach, the error associated with the estimated variations in the perturbations is of the order of 10\u0000<inline-formula><tex-math>$^{-4}$</tex-math></inline-formula>\u0000 to 10\u0000<inline-formula><tex-math>$^{-3}$</tex-math></inline-formula>\u0000, making it a powerful tool to estimate simultaneously varying perturbation parameters by tracking multiple resonances.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-9"},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10682598","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Digital Twin Model for Optical Telescope Pointing Systems","authors":"Zhenghao Li;Yahui Zhang;Yan He","doi":"10.1109/JPHOT.2024.3462994","DOIUrl":"10.1109/JPHOT.2024.3462994","url":null,"abstract":"Pointing accuracy, as one of the important indexes to measure the performance of optical tele-scope products, is directly related to the observation quality and efficiency of the telescope, but affected by a variety of complex factors, the timeliness problem of pointing correction affects the smooth progress of the work. In this study, this paper focuses on the error modelling of optical telescope pointing system under limited observation conditions. In this paper, we first explore the changing law of each parameter and the unknown system error. On this basis, assuming that the system is in a stable state, a digital twin modelling model applied to the pointing system of an electro-optical telescope is proposed, which significantly improves the accuracy of the local pointing error correction by means of a limited observing condition: one newly captured star, and simulates and evaluates the feasibility of the twin model by using the experimental data from the external field, which provides the conditions for the evaluation of the maintenance status of the equipment.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-8"},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10683960","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}