{"title":"Advancing OAM-Based FSO Systems: Tackling Pointing Errors for Next-Generation Space and Terrestrial Links","authors":"Mohammad Taghi Dabiri;Meysam Ghanbari;Mazen Hasna","doi":"10.1109/JPHOT.2025.3575365","DOIUrl":null,"url":null,"abstract":"Orbital Angular Momentum (OAM)-based Free-Space Optical (FSO) communication systems offer immense potential for high-capacity, secure links, but their performance is highly sensitive to pointing errors. This paper provides a comprehensive analysis of OAM systems under pointing inaccuracies for both short-range terrestrial links and long-range inter-satellite communications. For short links, we demonstrate the trade-offs between increasing modulation order and the number of OAM modes, highlighting the potential of low-complexity two-stage detectors to mitigate computational overhead while maintaining robust performance. For inter-satellite links, where severe pointing errors dominate, we propose an innovative asymmetric mode design and optimal beam waist adjustment to enhance robustness against angular misalignments. Simulation results reveal critical insights into the interplay between pointing error intensity, mode selection, and system performance, offering practical guidelines for OAM system design in diverse scenarios. This work bridges the gap between theoretical modeling and real-world implementation, paving the way for reliable OAM-based communication in next-generation terrestrial and space networks.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 4","pages":"1-14"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11034716","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11034716/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Orbital Angular Momentum (OAM)-based Free-Space Optical (FSO) communication systems offer immense potential for high-capacity, secure links, but their performance is highly sensitive to pointing errors. This paper provides a comprehensive analysis of OAM systems under pointing inaccuracies for both short-range terrestrial links and long-range inter-satellite communications. For short links, we demonstrate the trade-offs between increasing modulation order and the number of OAM modes, highlighting the potential of low-complexity two-stage detectors to mitigate computational overhead while maintaining robust performance. For inter-satellite links, where severe pointing errors dominate, we propose an innovative asymmetric mode design and optimal beam waist adjustment to enhance robustness against angular misalignments. Simulation results reveal critical insights into the interplay between pointing error intensity, mode selection, and system performance, offering practical guidelines for OAM system design in diverse scenarios. This work bridges the gap between theoretical modeling and real-world implementation, paving the way for reliable OAM-based communication in next-generation terrestrial and space networks.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.