热控多螺距反向耦合器中增强的带宽可调性

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Lorenzo Tunesi;Vittorio Curri;Andrea Carena;Paolo Bardella
{"title":"热控多螺距反向耦合器中增强的带宽可调性","authors":"Lorenzo Tunesi;Vittorio Curri;Andrea Carena;Paolo Bardella","doi":"10.1109/JPHOT.2025.3576041","DOIUrl":null,"url":null,"abstract":"Grating-Assisted Contra Directional Couplers (GACDCs) are versatile photonic devices which can implement free-spectral-range free add-drop flat-top responses, making them interesting solutions for Wavelength Division Multiplexing (WDM) systems and many other applications requiring spectral shaping. Their bandwidth can be dynamically changed through thermal means, granting an additional degree of freedom in their design and application. Design techniques involving the periodicity of the gratings (pitch chirping) can enhance the effect of this dynamic control, leading to wider bandwidth tunability in terms of both central channel wavelength and passband width, while leaving the control mechanism and power unchanged. In this work, we investigate the limits of these effects, highlighting the advantages through simulation of both the optical response and the thermal control.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 4","pages":"1-11"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11024028","citationCount":"0","resultStr":"{\"title\":\"Enhanced Bandwidth Tunability in Thermally Controlled Multi-Pitch Contra-Directional Couplers\",\"authors\":\"Lorenzo Tunesi;Vittorio Curri;Andrea Carena;Paolo Bardella\",\"doi\":\"10.1109/JPHOT.2025.3576041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grating-Assisted Contra Directional Couplers (GACDCs) are versatile photonic devices which can implement free-spectral-range free add-drop flat-top responses, making them interesting solutions for Wavelength Division Multiplexing (WDM) systems and many other applications requiring spectral shaping. Their bandwidth can be dynamically changed through thermal means, granting an additional degree of freedom in their design and application. Design techniques involving the periodicity of the gratings (pitch chirping) can enhance the effect of this dynamic control, leading to wider bandwidth tunability in terms of both central channel wavelength and passband width, while leaving the control mechanism and power unchanged. In this work, we investigate the limits of these effects, highlighting the advantages through simulation of both the optical response and the thermal control.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 4\",\"pages\":\"1-11\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11024028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11024028/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11024028/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光栅辅助反向定向耦合器(gacdc)是一种多功能光子器件,可以实现自由频谱范围的自由加降平顶响应,使其成为波分复用(WDM)系统和许多其他需要频谱整形的应用的有趣解决方案。它们的带宽可以通过热手段动态改变,在设计和应用中赋予额外的自由度。涉及光栅周期性(基音啁啾)的设计技术可以增强这种动态控制的效果,在保持控制机制和功率不变的情况下,在中心信道波长和通频带宽度方面都具有更宽的带宽可调性。在这项工作中,我们研究了这些影响的局限性,并通过模拟光学响应和热控制来突出其优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Bandwidth Tunability in Thermally Controlled Multi-Pitch Contra-Directional Couplers
Grating-Assisted Contra Directional Couplers (GACDCs) are versatile photonic devices which can implement free-spectral-range free add-drop flat-top responses, making them interesting solutions for Wavelength Division Multiplexing (WDM) systems and many other applications requiring spectral shaping. Their bandwidth can be dynamically changed through thermal means, granting an additional degree of freedom in their design and application. Design techniques involving the periodicity of the gratings (pitch chirping) can enhance the effect of this dynamic control, leading to wider bandwidth tunability in terms of both central channel wavelength and passband width, while leaving the control mechanism and power unchanged. In this work, we investigate the limits of these effects, highlighting the advantages through simulation of both the optical response and the thermal control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信