Tianxiang Wu;Xi Wang;Liqi Zhu;Xun Li;Jian Huang;Zhikai Gan;Yanfeng Wei;Chun Lin
{"title":"Probing the Dark Current of Multi-Layer Heterojunction HgCdTe Long-Wavelength and Very-Long-Wavelength Infrared Photodiodes","authors":"Tianxiang Wu;Xi Wang;Liqi Zhu;Xun Li;Jian Huang;Zhikai Gan;Yanfeng Wei;Chun Lin","doi":"10.1109/JQE.2024.3445293","DOIUrl":"https://doi.org/10.1109/JQE.2024.3445293","url":null,"abstract":"This paper characterizes the dark current development of p-on-n type HgCdTe multi-layer heterojunction long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) photodiodes. Four devices that operate at different wavelengths are fabricated by employing a multi-layer structure. The results demonstrate the favorable dark current which is close to the “Rule 07” limitation is obtained with a 50% cutoff wavelength of \u0000<inline-formula> <tex-math>$16.6~mu $ </tex-math></inline-formula>\u0000m. Besides, the influence mechanisms on the device are extracted by analyzing the temperature-dependent dark current from 40 K to 130 K. The results suggest that the proposed devices perform comparable to those of conventional double-layer heterojunction devices. Furthermore, it can be noted that by precisely controlling the composition distribution and depletion region positions as well as improving the process, we can further achieve superior LWIR and VLWIR devices.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-6"},"PeriodicalIF":2.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth Coker;Chuyuan Zheng;Joseph Roger Arhin;Kwame Opuni-Boachie Obour Agyekum;Wei Li Zhang
{"title":"Control of Polaritonic Coupler Using Optical Stark Effect in 2D Hybrid Organic-Inorganic Perovskite Microcavity","authors":"Kenneth Coker;Chuyuan Zheng;Joseph Roger Arhin;Kwame Opuni-Boachie Obour Agyekum;Wei Li Zhang","doi":"10.1109/JQE.2024.3441613","DOIUrl":"https://doi.org/10.1109/JQE.2024.3441613","url":null,"abstract":"This research delves into the innovative application of the optical Stark effect in dynamically guiding polaritons through a Y-shaped potential, forming a polaritonic coupler within a 2D hybrid organic-inorganic perovskite microcavity. The study explores the characteristics of the 2D perovskite, focusing on harnessing the optical Stark-induced energy shift in the polariton branches. The polaritonic coupler, which has a single input and two divergent outputs, is subjected to an external optical Stark pulse, dynamically guiding polaritons between the input and outputs. The research focuses on examining the controllability of the polaritonic coupler through the polariton coupling ratio, highlighting the regulatory role played by the optical Stark effect in this dynamic process. In-depth analyses of the spatial distribution and time evolution of polaritons within the coupler reveal that the optical Stark pulse effectively regulates the polariton coupling ratio, realizing a programmable coupler. This investigation not only advances the fundamental understanding of polariton dynamics within 2D hybrid organic-inorganic perovskite microcavities but also demonstrates the potential for developing optically controlled integrated photonic devices.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-8"},"PeriodicalIF":2.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George Sarantoglou;Adonis Bogris;Charis Mesaritakis
{"title":"All-Optical, Reconfigurable, and Power Independent Neural Activation Function by Means of Phase Modulation","authors":"George Sarantoglou;Adonis Bogris;Charis Mesaritakis","doi":"10.1109/JQE.2024.3437353","DOIUrl":"10.1109/JQE.2024.3437353","url":null,"abstract":"In this work, we present numerical results concerning an integrated photonic non-linear activation function that relies on a power independent, non-linear phase to amplitude conversion in a passive optical resonator. The underlying mechanism is universal to all optical filters, whereas here, simulations were based on micro-ring resonators. Investigation revealed that the photonic neural node can be tuned to support a wide variety of continuous activation functions that are relevant to the neural network architectures, such as the sigmoid and the soft-plus functions. The proposed photonic node is numerically evaluated in the context of time delayed reservoir computing (TDRC) scheme, targeting the one-step ahead prediction of the Santa Fe series. The proposed phase to amplitude TDRC is benchmarked versus the conventional amplitude based TDRC, showcasing a performance boost by one order of magnitude.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-6"},"PeriodicalIF":2.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141883225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3431497","DOIUrl":"10.1109/JQE.2024.3431497","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 4","pages":"C3-C3"},"PeriodicalIF":2.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10615232","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Performance Black Arsenic Photodetector Assisted by Multi-Mechanisms Effects Detecting From Visible to Terahertz","authors":"Yuheng Ding;Shi Zhang","doi":"10.1109/JQE.2024.3434658","DOIUrl":"10.1109/JQE.2024.3434658","url":null,"abstract":"Defects such as high dark current, low temperature working conditions, low flexibility hinder the development of traditional material photodetectors. While some innovative low-dimensional materials, such as black phosphorus, are highly unstable. As a twin material of black phosphorus, black arsenic (b-As) has excellent properties of black phosphorus and relatively eliminates the characteristics of instability. Here, a high-performance photodetector based on black arsenic is proposed in detecting visible, near infrared and terahertz. The b-As photodetector exhibits a fast response speed while maintaining a responsivity of 647.5 V/W and a noise equivalent power of \u0000<inline-formula> <tex-math>$2.30times 10 ^{-11}$ </tex-math></inline-formula>\u0000 W/Hz\u0000<inline-formula> <tex-math>$^{1/2}$ </tex-math></inline-formula>\u0000 under 520 nm irradiation. Assisted by photoconductive effect and thermal effect, we explain the reason for its detection of visible, near infrared and terahertz respectively. Moreover, this b-As photodetector exhibits high-resolution imaging capability on target band. By demonstrating the significant potential of b-As in the realm of broadband photodetection, our research presents a promising avenue for future optoelectronic applications.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 1","pages":"1-8"},"PeriodicalIF":2.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cryo-VCSELs Operated at 2.8 K and 40 K With Record Bandwidth, Power, and Linearity for Optical Data Links in Quantum Computing","authors":"Haonan Wu;Wenning Fu;Zetai Liu;Derek Chaw;Yulin He;Milton Feng","doi":"10.1109/JQE.2024.3433450","DOIUrl":"10.1109/JQE.2024.3433450","url":null,"abstract":"Cryogenic CMOS controller and Superconducting processors for scalable Quantum Computing are pivotal technological advancements for cryogenic computing. However, energy-efficient data link from cryogenic operations to room temperature applications remains to be developed. In this work, we report on the development of high-speed Cryogenic VCSEL with material design of gain-cavity alignment around 40 K and oxide-aperture of \u0000<inline-formula> <tex-math>$6~mu $ </tex-math></inline-formula>\u0000m operated from 2.8 K to 300 K. In addition, we have established on-wafer cryogenic microwave electrical and optical probing system for performing accurate measurement calibration. Cryo-VCSELs at 2.8 K and 40 K with the record Laser Pout >13 mW, high L-I linearity up to I/I\u0000<inline-formula> <tex-math>$_{mathrm {th}} gt 125$ </tex-math></inline-formula>\u0000 and bandwidth f\u0000<inline-formula> <tex-math>$_{mathrm {-3dB}} gt 50$ </tex-math></inline-formula>\u0000 GHz are measured. Furthermore, these devices demonstrate high-speed optical data link of NRZ =64 Gb/s with TDEC <3 dB and 112 Gb/s PAM-4 with TDECQ =2.56 dB at 7 mA operating current.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-10"},"PeriodicalIF":2.2,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayin Peng;Nueraminaimu Maihemuti;Yimamujiang Aisan;Zhen Yang
{"title":"Bidirectional Controlled Assisted Cloning of Arbitrary Unknown Single-Qudit States","authors":"Jiayin Peng;Nueraminaimu Maihemuti;Yimamujiang Aisan;Zhen Yang","doi":"10.1109/JQE.2024.3425571","DOIUrl":"10.1109/JQE.2024.3425571","url":null,"abstract":"By making use of d-dimensional Hadamard gates and d-dimensional controlled NOT gates, we first construct a five-qudit maximally entangled state, and then use it as the quantum channel to propose a new bidirectional scheme for cloning two different arbitrary unknown single-qudit simultaneously under the assistance from a state preparer and the control of a supervisor. This scheme consists of two stages: quantum teleportation and assisted cloning. To fulfil the purpose, the first stage of this scheme requires bidirectional controlled teleportation via our constructed five-qudit maximally entangled state as quantum channel, where two distant communicators can simultaneously exchange their unknown single-qudit states with unit fidelity and unit probability under the permission of the supervisor.In the second stage,the state preparer disentangles any remaining entangled states by introducing two auxiliary particles, implementing a unitary transformation and two single-particle projective measurements. Subsequently, they transmit a specific number of classical bits to two distinct communicators in order to generate two precise replicas of different unknown states. Subsequently, the above scheme is extended with a certain probability and unit fidelity by replacing the above d-dimensional quantum channel with a five-qudit non-maximally entangled state. Finally, we further analyze the expansion issues of our scheme from the perspectives of positive operator-valued measurement (POVM for short), general quantum channel and the number of state preparers and controllers, and point out that the scheme is secure.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-10"},"PeriodicalIF":2.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Analysis for High-Speed Hybrid- Modulation Semiconductor Laser Integrated With Passive Waveguide","authors":"Hiroshi Yasaka;Nobuhide Yokota;Takahiko Shindo;Wataru Kobayashi","doi":"10.1109/JQE.2024.3424421","DOIUrl":"10.1109/JQE.2024.3424421","url":null,"abstract":"The high-speed intrinsic modulation characteristics of a hybrid-modulation laser diode integrated with a passive waveguide was numerically analyzed. It was confirmed that the 3-dB intrinsic small-signal modulation bandwidth depended on the coupling coefficient of the corrugation grating \u0000<inline-formula> <tex-math>$kappa $ </tex-math></inline-formula>\u0000 at the distributed feedback (DFB) section and modulation amplitude ration (MAR) at the DFB and intra-cavity loss-modulation sections. The modulation bandwidth became wider when \u0000<inline-formula> <tex-math>$kappa $ </tex-math></inline-formula>\u0000 decreased and MAR increased. The maximum 3-dB E/O modulation bandwidth was more than 600 GHz when \u0000<inline-formula> <tex-math>$kappa $ </tex-math></inline-formula>\u0000 and MAR were from 40 to 80 cm−1 and 6.4 V. It remained more than 300 GHz when \u0000<inline-formula> <tex-math>$kappa $ </tex-math></inline-formula>\u0000 was from 40 to 200 cm−1 and MAR was from 3.2 to 6.4 V. Dynamic single-mode operation of the laser was demonstrated numerically with a 200-Gbit/s non-return-to-zero (NRZ) modulation signal. A clear eye-opened optical NRZ pattern with a minimum extinction ratio at the eye-opening area of more than 1.0 dB was confirmed in a wide operation range and at a higher bit rate up to 300 Gbit/s.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 4","pages":"1-8"},"PeriodicalIF":2.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}