Tianxiang Wu;Xi Wang;Liqi Zhu;Xun Li;Jian Huang;Zhikai Gan;Yanfeng Wei;Chun Lin
{"title":"Probing the Dark Current of Multi-Layer Heterojunction HgCdTe Long-Wavelength and Very-Long-Wavelength Infrared Photodiodes","authors":"Tianxiang Wu;Xi Wang;Liqi Zhu;Xun Li;Jian Huang;Zhikai Gan;Yanfeng Wei;Chun Lin","doi":"10.1109/JQE.2024.3445293","DOIUrl":null,"url":null,"abstract":"This paper characterizes the dark current development of p-on-n type HgCdTe multi-layer heterojunction long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) photodiodes. Four devices that operate at different wavelengths are fabricated by employing a multi-layer structure. The results demonstrate the favorable dark current which is close to the “Rule 07” limitation is obtained with a 50% cutoff wavelength of \n<inline-formula> <tex-math>$16.6~\\mu $ </tex-math></inline-formula>\nm. Besides, the influence mechanisms on the device are extracted by analyzing the temperature-dependent dark current from 40 K to 130 K. The results suggest that the proposed devices perform comparable to those of conventional double-layer heterojunction devices. Furthermore, it can be noted that by precisely controlling the composition distribution and depletion region positions as well as improving the process, we can further achieve superior LWIR and VLWIR devices.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10638093/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper characterizes the dark current development of p-on-n type HgCdTe multi-layer heterojunction long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) photodiodes. Four devices that operate at different wavelengths are fabricated by employing a multi-layer structure. The results demonstrate the favorable dark current which is close to the “Rule 07” limitation is obtained with a 50% cutoff wavelength of
$16.6~\mu $
m. Besides, the influence mechanisms on the device are extracted by analyzing the temperature-dependent dark current from 40 K to 130 K. The results suggest that the proposed devices perform comparable to those of conventional double-layer heterojunction devices. Furthermore, it can be noted that by precisely controlling the composition distribution and depletion region positions as well as improving the process, we can further achieve superior LWIR and VLWIR devices.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.