{"title":"Incorporating ESO into Deep Koopman Operator Modeling for Control of Autonomous Vehicles","authors":"Hao Chen;Chen Lv","doi":"10.1109/TCST.2024.3378456","DOIUrl":"10.1109/TCST.2024.3378456","url":null,"abstract":"Koopman operator theory is a kind of data-driven modeling approach that accurately captures the nonlinearities of mechatronic systems such as vehicles against physics-based methods. However, the infinite-dimensional Koopman operator is impossible to implement in real-world applications. To approximate the infinite-dimensional Koopman operator through collection dataset rather than manual trial and error, we adopt deep neural networks (DNNs) to extract basis functions by offline training and map the nonlinearities of vehicle planar dynamics into a linear form in the lifted space. Besides, the effects of the dimensions of basis functions on the model accuracy are explored. Furthermore, the extended state observer (ESO) is introduced to online estimate the total disturbance in the lifted space and compensate for the modeling errors and residuals of the learned deep Koopman (DK) operator while also improving its generalization. Then, the proposed model is applied to predict vehicle states within prediction horizons and later formulates the constrained finite-time optimization problem of model predictive control (MPC), i.e., ESO-DKMPC. In terms of the trajectory tracking of autonomous vehicles, the ESO-DKMPC generates the wheel steering angle to govern lateral motions based on the decoupling control structure. The various conditions under the double-lane change scenarios are built on the CarSim/Simulink co-simulation platform, and extensive comparisons are conducted with the linear MPC (LMPC) and nonlinear MPC (NMPC) informed by the physics-based model. The results indicate that the proposed ESO-DKMPC has better tracking performance and moderate efficacy both within linear and nonlinear regions.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1854-1864"},"PeriodicalIF":4.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiobjective Vector Control of a Three-Phase Vibratory Energy Harvester","authors":"Connor H. Ligeikis;Jeffrey T. Scruggs","doi":"10.1109/TCST.2024.3378958","DOIUrl":"10.1109/TCST.2024.3378958","url":null,"abstract":"In vibration energy-harvesting technologies, feedback control is required to maximize the average power generated from stochastic disturbances. In large-scale applications, it is often advantageous to use three-phase conversion technologies for transduction. In such situations, vector control techniques can be used to optimally control the transducer currents in the direct-quadrature reference frame, as dynamic functions of feedback measurements. In this paradigm, converted energy is optimally controlled via the quadrature current. The direct current is only used to maintain control of the quadrature current when the machine’s internal back electromotive force (EMF) exceeds the voltage of the power bus, a technique called field weakening. Due to increased dissipation in the stator coil, the use of field weakening results in a reduction in power conversion, relative to what would theoretically be possible with a larger bus voltage. This overvoltage issue can be alternatively addressed by imposing a competing objective in the optimization of the quadrature current controller such that the frequency and duration of these overvoltage events are reduced. However, this also results in reduced generated power, due to the need to satisfy the competing constraint. This article examines the tradeoff between these two approaches to overvoltage compensation and illustrates a methodology for determining the optimum balance between the two approaches.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1770-1784"},"PeriodicalIF":4.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical Co-Design of Receding Horizon Estimation and Control for Power Converters","authors":"Liwei Zhou;Matthias Preindl","doi":"10.1109/TCST.2024.3374156","DOIUrl":"10.1109/TCST.2024.3374156","url":null,"abstract":"The analytical co-design strategies of receding horizon estimation (RHE) and control (RHC) have been proposed in this brief for the general applications of power converters. A typical two-level power module with \u0000<inline-formula> <tex-math>$LC$ </tex-math></inline-formula>\u0000 filter system is demonstrated for the estimation and control implementation. The proposed analytical co-design procedures include: 1) system state space modeling; 2) receding horizon configuration/setup; 3) application of RHE–RHC for various interfaces; and 4) parametric analysis. The proposed strategies have been validated for the energy conversion applications of grid-connected dc/ac inverter and resistive load dc/dc converter. The advantages include: 1) reduced sensor cost with accurate estimation; 2) improved transient performance with receding horizon-based algorithms; and 3) reconfigurable RHE and RHC software unit for wide applications. The experimental test results verified the proposed methods.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1520-1527"},"PeriodicalIF":4.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alan Williams;Alexander Scheinker;En-Chuan Huang;Charles Taylor;Miroslav Krstic
{"title":"Experimental Safe Extremum Seeking for Accelerators","authors":"Alan Williams;Alexander Scheinker;En-Chuan Huang;Charles Taylor;Miroslav Krstic","doi":"10.1109/TCST.2024.3377828","DOIUrl":"10.1109/TCST.2024.3377828","url":null,"abstract":"We demonstrate the recent designs of safe extremum seeking (Safe ES) on the 1-km-long charged particle accelerator at the Los Alamos Neutron Science Center (LANSCE). Safe ES is a modification of extremum seeking (ES) which, in addition to minimizing an analytically unknown cost, also employs a safety filter based on an analytically unknown control barrier function (CBF) safety metric. Tuning is necessitated by accelerators being large complex systems, with many drifting parameters due to thermal effects and degradation. At the same time, safe operation (the maintenance of state constraints) is crucial, as damage brings astronomical costs, both financially and in operation downtime. Our measured (but analytically unknown) safety metric is the beam current. We perform multivariable Safe ES on three accelerator applications, in which we adapt 4, 6, and 3 magnet strength parameters, respectively. Two of the three applications are for validated simulation models of beamlines at LANSCE: the first for the proton radiography (pRad) beamline of 800-MeV protons for spot size tuning; the second on a high-performance code, HPSim, for tuning the low-energy beam transport (LEBT) region that contains a beam of 750-keV protons. The third is an experimental tuning of the steering magnets in the LEBT at LANSCE.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1881-1890"},"PeriodicalIF":4.9,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Zhou;Mingfei Lu;Guanjie Hu;Zongyi Guo;Jianguo Guo
{"title":"Koopman Operator-Based Integrated Guidance and Control for Strap-Down High-Speed Missiles","authors":"Min Zhou;Mingfei Lu;Guanjie Hu;Zongyi Guo;Jianguo Guo","doi":"10.1109/TCST.2024.3401609","DOIUrl":"10.1109/TCST.2024.3401609","url":null,"abstract":"This work focuses on addressing the challenges of integrated guidance and control (IGC) for strap-down high-speed missiles with nonlinearities and field-of-view constraints. To achieve this, a data-driven prediction model using the Koopman operator is developed, which exhibits high accuracy in capturing the significant nonlinearities of the investigated high-speed missiles. Furthermore, the field-of-view restrictions imposed by the strap-down seeker are addressed by introducing a Lyapunov-based model predictive control (LMPC) scheme based on the linear Koopman prediction model. To enhance the robustness of the system, a disturbance observer is integrated into the Koopman-operator-based LMPC (KLMPC), enabling the estimation and compensation of disturbances. A KLMPC-based IGC (KLMPC-IGC) design framework is then developed to solve the constrained IGC problem, ensuring the stability and robustness of the closed-loop system. Numerical simulation results validate the higher prediction accuracy of the proposed linear prediction model compared with traditional local linearization prediction, as well as demonstrate the effectiveness of the presented approach.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2436-2443"},"PeriodicalIF":4.9,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drag-Free and Attitude Control System for the LISA Space Mission: An H∞ Constrained Decoupling Approach","authors":"Simone Vidano;Michele Pagone;Jonathan Grzymisch;Valentin Preda;Carlo Novara","doi":"10.1109/TCST.2024.3400176","DOIUrl":"10.1109/TCST.2024.3400176","url":null,"abstract":"This article presents an approach to drag-free and attitude control for the laser interferometer space antenna (LISA) space mission, based on a constrained decoupling \u0000<inline-formula> <tex-math>$H_{infty }$ </tex-math></inline-formula>\u0000 approach. LISA will be a space-based gravitational wave observatory, which is expected to be launched by the European Space Agency (ESA) in 2034. The LISA concept consists of a constellation of three satellites that exchange a bidirectional laser link to perform interferometry. The gravitational waves can be detected by measuring the relative distance variations, by means of laser interferometers, between two free-falling bodies located at a far distance, called the test masses (TMs). In this framework, the spacecraft (SC) drag-free attitude control plays a key role since it allows the TMs to move in free-fall conditions, rejecting external disturbances and noises, at the nanoscopic level, that can compromise the quality of scientific measurements. To this end, we propose an \u0000<inline-formula> <tex-math>$H_{infty } $ </tex-math></inline-formula>\u0000 drag-free attitude controller, based on a constrained decoupling of the SC linearized dynamics, where the pseudoinverse of the control matrix is obtained by minimizing the inversion error. Moreover, we provide sufficient conditions for stability of the closed-loop, in order to ensure that the decoupling inversion error does not affect the closed-loop stability. The effectiveness of the proposed approach is confirmed by means of an extensive Monte Carlo campaign, carried out employing a high-fidelity simulator.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2149-2163"},"PeriodicalIF":4.9,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jens Einar Bremnes;Torbjørn Reitan Fyrvik;Thomas Røbekk Krogstad;Asgeir Johan Sørensen
{"title":"Design of a Switching Controller for Tracking AUVs With an ASV","authors":"Jens Einar Bremnes;Torbjørn Reitan Fyrvik;Thomas Røbekk Krogstad;Asgeir Johan Sørensen","doi":"10.1109/TCST.2024.3375151","DOIUrl":"10.1109/TCST.2024.3375151","url":null,"abstract":"Operations of multiagent systems consisting of autonomous underwater vehicles (AUVs) and autonomous surface vessels (ASVs) offer a cost-effective solution to a wide range of marine applications, such as mapping and monitoring of the oceans. This article proposes a switching controller for tracking one or multiple AUVs with an ASV. Using three control modes, the controller ensures that: 1) each AUV eventually gets tracked and aided; 2) collisions with the AUVs are avoided; and 3) the ASV stops active propulsion whenever practical in order to conserve energy and reduce acoustic noise caused by the propulsion system. The switching of modes is based on the relative geometry between the ASV and the AUVs and backward reachable sets (BRSs). The switching controller is experimentally demonstrated with satisfying results in a series of field experiments in the Trondheim Fjord, where up to three AUVs executing missions simultaneously are tracked and aided by one ASV.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1785-1800"},"PeriodicalIF":4.9,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Guo;Ognjen Stanojev;Gabriela Hug;Tyler Holt Summers
{"title":"Sparse Structure Design for Stochastic Linear Systems via a Linear Matrix Inequality Approach","authors":"Yi Guo;Ognjen Stanojev;Gabriela Hug;Tyler Holt Summers","doi":"10.1109/TCST.2024.3377509","DOIUrl":"10.1109/TCST.2024.3377509","url":null,"abstract":"We propose a sparsity-promoting feedback control design for stochastic linear systems with multiplicative noise. The objective is to identify an optimal sparse control architecture and optimize the closed-loop performance while stabilizing the system in the mean-square sense. Our approach approximates the nonconvex combinatorial optimization problem by minimizing various matrix norms subject to the linear matrix inequality (LMI) stability condition. We present two design problems to reduce the number of actuators and the number of sensors via a low-dimensional output. A regularized linear quadratic regulator with multiplicative (LQRm) noise optimal control problem and its convex relaxation are presented to demonstrate the tradeoff between the suboptimal closed-loop performance and the sparsity degree of control structure. Case studies on power grids for wide-area frequency control show that the proposed sparsity-promoting control can considerably reduce the number of sensors and actuators without significant loss in system performance. The sparse control architecture is robust to substantial system-level disturbances while achieving mean-square stability.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1528-1535"},"PeriodicalIF":4.9,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Secondary Frequency and Voltage Regulation for Inverter-Based Microgrids: A Sparsity-Promoting DAPI Control Approach","authors":"Junhui Zhang;Yuxi Men;Lizhi Ding;Xiaonan Lu","doi":"10.1109/TCST.2024.3374153","DOIUrl":"10.1109/TCST.2024.3374153","url":null,"abstract":"This brief developed a novel sparsity-promoting distributed averaging-based proportional-integral (DAPI) control approach for secondary frequency and voltage regulation in inverter-based microgrids (MGs). In order to enhance the resilience of DAPI controllers and save communication resources, the metric “sparsity” needs to be fully considered without weakening its robustness to load fluctuations when designing the Laplacian matrix. To this end, in our work, a sparsity-promoting optimal linear output-feedback control problem is constructed, and an optimization framework is proposed by minimizing the impact of load fluctuation and cardinality function of the Laplacian matrix. Moreover, the optimization problem is flexible with its constraints which guarantee the basic properties of the Laplacian matrix for DAPI controllers. To solve the optimization problem, an alternating direction method of multipliers (ADMMs) is also developed, and the Laplacian matrix is then obtained. Furthermore, extensive case studies have shown that our approach can reduce the communication links of DAPI controllers effectively, and the robustness of voltage and reactive power sharing to load fluctuations is not weakened.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1512-1519"},"PeriodicalIF":4.9,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luuk Poort;Bart Besselink;Rob H. B. Fey;Nathan van de Wouw
{"title":"Balancing-Based Reduction for Interconnected Passive Systems","authors":"Luuk Poort;Bart Besselink;Rob H. B. Fey;Nathan van de Wouw","doi":"10.1109/TCST.2024.3375760","DOIUrl":"10.1109/TCST.2024.3375760","url":null,"abstract":"We propose a novel balancing-based reduction approach for the reduction of interconnected, passive LTI subsystems. This approach retains (strict) passivity and (asymptotic) stability of both the subsystems and the interconnected system. Simultaneously, we retain an accurate description of the input–output behavior of the interconnected system by accounting for the dynamics of the interconnected system in the reduction of the subsystems. A relevant structural dynamics benchmark of approximately two thousand states is presented, by which we verify the preservation of stability and passivity and demonstrate the superior model accuracy of the proposed reduction method with respect to existing methods from the literature.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1817-1826"},"PeriodicalIF":4.9,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}