Daniel Caporale;Luke F. van Eijk;Nima Karbasizadeh;Stijn Beer;Dragan Kostić;S. Hassan HosseinNia
{"title":"Practical Implementation of a Reset Controller to Improve Performance of an Industrial Motion Stage","authors":"Daniel Caporale;Luke F. van Eijk;Nima Karbasizadeh;Stijn Beer;Dragan Kostić;S. Hassan HosseinNia","doi":"10.1109/TCST.2024.3374155","DOIUrl":"10.1109/TCST.2024.3374155","url":null,"abstract":"In this work, the proportional Clegg integrator (PCI), a resetting proportional-integrator (PI) element, is studied with the aim of improving the performance of an industrial motion stage currently controlled by a linear controller. A novel parallel continuous reset (CR) architecture, based on the PI, is presented, along with frequency-based tuning guidelines, similar to linear time-invariant (LTI) loopshaping techniques. Open-loop higher order sinusoidal input describing functions (HOSIDFs) and pseudo-sensitivities computed through analytically derived approximate closed-loop HOSIDFs were effectively applied to predict steady-state performance. The experimental results, obtained on a wire bonding machine, confirmed that resonance-induced vibrations of the machine’s base frame can be suppressed more effectively by adopting a PCI-PID controller compared to the currently used linear controller. The novel structure does not only reduce unwanted excitation of higher order harmonics of the base frame resonance, such as the series CR architecture recently introduced in literature, but also avoids amplification of noise when implemented in practice. With the novel parallel structure, a significant (32%) decrease in the root mean square (rms) of the settling error could be achieved when compared to the linear controller currently used and the series CR reset structure.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1451-1462"},"PeriodicalIF":4.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10473227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Coverage Control-Based Idle Vehicle Rebalancing Approach for Autonomous Mobility-on-Demand Systems","authors":"Pengbo Zhu;Isik Ilber Sirmatel;Giancarlo Ferrari-Trecate;Nikolas Geroliminis","doi":"10.1109/TCST.2024.3375765","DOIUrl":"10.1109/TCST.2024.3375765","url":null,"abstract":"As an emerging mode of urban transportation, autonomous mobility-on-demand (AMoD) systems show the potential in improving mobility in cities through timely and door-to-door services. However, the spatiotemporal imbalances between mobility demand and supply may lead to inefficiencies and a low quality of service. Vehicle rebalancing (i.e., dispatching idle vehicles to high-demand areas) is a potential solution for efficient AMoD fleet management. In this article, we formulate the vehicle rebalancing problem as a coverage control problem for the deployment of a fleet of mobile agents for AMoD operation in urban areas. Performance is demonstrated via microscopic simulations representing a large urban road network in Shenzhen, China. The results reveal the potential of the proposed method in improving service rates and decreasing passenger waiting times.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1839-1853"},"PeriodicalIF":4.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Filter-Expanded Linear Quadratic Regulator and Its Application in Wind Turbine Vibration Control","authors":"Haoyu Wang;Haizhong Zhang;Michael Z. Q. Chen","doi":"10.1109/TCST.2024.3375713","DOIUrl":"10.1109/TCST.2024.3375713","url":null,"abstract":"In the domain of vibration control, a common scenario arises where two conflicting \u0000<inline-formula> <tex-math>$H_{2}$ </tex-math></inline-formula>\u0000 norm performance indicators require simultaneous improvements. In this article, a novel control method known as the filter-expanded linear quadratic regulator (FELQR) is proposed to effectively address this challenge. In comparison with the linear quadratic regulator (LQR) method, the FELQR method demonstrates considerable advantages in managing two conflicting \u0000<inline-formula> <tex-math>$H_{2}$ </tex-math></inline-formula>\u0000 norm performance indicators. The primary contribution lies in establishing a constraint relationship between any two outputs of a linear vibration control system during the offline tuning of the state feedback gain. Leveraging this constraint relationship, a filter design process for the FELQR method is provided. By capitalizing on the disparate impact of gain tuning on the two outputs, the FELQR method attains a higher upper bound of vibration control performance compared with the LQR method. To validate the proposed FELQR method, simulations and experiments are conducted to assess its performance and robustness. The obtained results provide sufficient evidence supporting the efficacy of the FELQR method. Furthermore, a theoretical explanation is provided to elucidate the observed outcomes.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1827-1838"},"PeriodicalIF":4.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Theoretical Analysis of the Velocity Obstacle Method for Nonholonomic Vehicles and Underactuated Surface Vessels","authors":"Aurora Haraldsen;Martin Syre Wiig;Kristin Ytterstad Pettersen","doi":"10.1109/TCST.2024.3375023","DOIUrl":"10.1109/TCST.2024.3375023","url":null,"abstract":"Collision avoidance (CA) systems are pivotal for enabling vehicles to autonomously complete tasks in environments containing obstacles. With its low computational burden and underlying flexibility, the velocity obstacle (VO) algorithm presents a favorable method to avoid collisions, which is based on representing obstacles in the velocity space. In this study, we use the VO principle to form a reactive strategy for vehicles to avoid collisions with dynamic obstacles, which is applied to two different classes of systems, specifically nonholonomic vehicles and underactuated surface vessels. Instead of producing velocity references, the algorithm outputs collision-free directions, thus circumventing the need for explicitly controlling the vehicle speed. Moreover, the majority of existing VO approaches are only supported by simulations and experiments of specific CA scenarios, and the few studies that include some theoretical assurance are based on assumptions that cannot be guaranteed in the general case. In this article, we consider factors such as vehicle dynamics and constraints in a rigorous analysis of the algorithm. We analytically derive conditions ensuring feasibility of the avoidance maneuvers and overall safety of the vehicle, which provide intuitive requirements on the parameters of the algorithm. The theoretical results are supported through simulations and experiments of the strategy applied to a nonholonomic vehicle and an underactuated marine vessel.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 5","pages":"1801-1816"},"PeriodicalIF":4.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140170117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Pontryagin Principle-Based Frequency Governor for Constrained Computing Systems","authors":"Sachit Rao;Nishant Malpani;Shrisha Rao","doi":"10.1109/TCST.2024.3373228","DOIUrl":"10.1109/TCST.2024.3373228","url":null,"abstract":"Management of power is a crucial problem in computing systems where power is finite, processor performance and energy needs are high, and thermal constraints have to be respected. The trade-off between performance and energy expenditure is well recognized. To satisfy these conflicting requirements, in this article, a dynamic system framework is adopted, and results from optimal control theory, notably Pontryagin’s Minimum Principle (PMP), are applied to derive an energy-optimal (EO) time-varying processor speed law, or frequency governor, to execute assigned tasks. PMP is chosen as it allows for system input constraints as well as thermal and power budget constraints to be considered; the PMP-based governor is also compared with a Model Predictive Controller (MPC) implemented by following the Explicit-MPC framework using a linear model. The main contributions of this article are 1) determining an empirical time-invariant nonlinear dynamic model of an Intel CPU with task execution rate, power consumption, and temperature as the outputs, and clock frequency as the input; 2) the Linux implementation of a PMP-based clock frequency governor on the CPU based on a linear model as well as the nonlinear model; and 3) hardware implementation of an Explicit-MPC on the same platform using the frequency schedule derived from linear model simulations. Limits on task completion times and energy savings achieved in the execution of three benchmark tasks: MiBench, LINPACK, and Sorting positive integers, are presented. Experimental results show that it is possible to reduce energy consumption with an increase in task execution time while executing these benchmark tasks; it is also shown that it is possible to tune the PMP and MPC parameters to obtain similar performances. The approach presented in this article can be applied to design optimal controllers for other types of stand-alone or heterogeneous computing systems.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 4","pages":"1442-1450"},"PeriodicalIF":4.9,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. M. K. K. Venkateswara Rao;Hamed Habibi;Jose Luis Sanchez-Lopez;Prathyush P. Menon;Christopher Edwards;Holger Voos
{"title":"Adaptive Super-Twisting Controller Design for Accurate Trajectory Tracking Performance of Unmanned Aerial Vehicles","authors":"D. M. K. K. Venkateswara Rao;Hamed Habibi;Jose Luis Sanchez-Lopez;Prathyush P. Menon;Christopher Edwards;Holger Voos","doi":"10.1109/TCST.2024.3398293","DOIUrl":"10.1109/TCST.2024.3398293","url":null,"abstract":"In this article, an adaptive super-twisting controller is designed for an agile maneuvering quadrotor unmanned aerial vehicle (UAV) to achieve accurate trajectory tracking in the presence of external disturbances. A cascaded control architecture is designed to determine the desired accelerations using the proposed controller and subsequently used to compute the desired orientation and angular rates. Finite-time convergence to the sliding surfaces and closed-loop system stability are analytically proven. Furthermore, the restrictive assumption on the upper bound of the disturbance is relaxed by designing a gain adaptation law and low-pass filtering of the estimated equivalent control. The proper selection of design parameters is discussed in detail. Finally, the effectiveness of the proposed method is evaluated by high-fidelity software-in-the-loop (SITL) simulations and validated by experimental studies.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2126-2135"},"PeriodicalIF":4.9,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10533861","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco De Lellis;Marco Coraggio;Giovanni Russo;Mirco Musolesi;Mario di Bernardo
{"title":"Guaranteeing Control Requirements via Reward Shaping in Reinforcement Learning","authors":"Francesco De Lellis;Marco Coraggio;Giovanni Russo;Mirco Musolesi;Mario di Bernardo","doi":"10.1109/TCST.2024.3393210","DOIUrl":"10.1109/TCST.2024.3393210","url":null,"abstract":"In addressing control problems such as regulation and tracking through reinforcement learning (RL), it is often required to guarantee that the acquired policy meets essential performance and stability criteria such as a desired settling time and steady-state error before deployment. Motivated by this, we present a set of results and a systematic reward-shaping procedure that: 1) ensures the optimal policy generates trajectories that align with specified control requirements and 2) allows to assess whether any given policy satisfies them. We validate our approach through comprehensive numerical experiments conducted in two representative environments from OpenAI Gym: the Pendulum swing-up problem and the Lunar Lander. Utilizing both tabular and deep RL methods, our experiments consistently affirm the efficacy of our proposed framework, highlighting its effectiveness in ensuring policy adherence to the prescribed control requirements.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2102-2113"},"PeriodicalIF":4.9,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10534075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandro Borri;Filippo Cacace;Andrea De Gaetano;Marcello Pompa;Simona Panunzi
{"title":"Optimal Periodic Impulsive Strategies in Glycemic Control","authors":"Alessandro Borri;Filippo Cacace;Andrea De Gaetano;Marcello Pompa;Simona Panunzi","doi":"10.1109/TCST.2024.3398288","DOIUrl":"10.1109/TCST.2024.3398288","url":null,"abstract":"Type-1 (insulin-dependent) diabetes is a chronic disease characterized by persistent excessive concentration of glucose in blood due to lack or insufficient secretion of the insulin hormone, which needs to be administered exogenously, possibly with automatic control techniques. In this work, we present a novel approach to glucose regulation for patients with type-1 diabetes, based on optimal impulsive control strategies, in the framework of the so-called multiple daily injections (MDI). In more detail, the optimal (periodic) glucose trajectory is first computed offline in ideal conditions and is then optimally tracked in real-time, with reduced computational effort, based on sparse measurements, so that possible nonidealities can be properly accounted for. The theoretical framework is able to preserve the nonlinear and continuous-time nature of the glucose–insulin model while realistically managing quantization in the actuation and assuming sporadic output measurements, from which the state of the system is estimated online. A preclinical in silico validation campaign based on a different, extended model of the glucose–insulin system shows the effectiveness of the proposed approach.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2062-2074"},"PeriodicalIF":4.9,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10533199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation Control of Nonholonomic Multirobot Systems Over Robot Coordinate Frames and Its Application to LiDAR-Based Robots","authors":"Kazunori Sakurama;Chunlai Peng;Ryo Asai;Hirokazu Sakata;Mitsuhiro Yamazumi","doi":"10.1109/TCST.2024.3397018","DOIUrl":"10.1109/TCST.2024.3397018","url":null,"abstract":"This article addresses a formation control problem for nonholonomic multirobot systems in robot coordinate frames. First, the nonholonomic constraint and measurement in robot coordinate frames are modeled with the Lie group theory on the special Euclidean group, \u0000<inline-formula> <tex-math>${mathrm {SE}}_{d}$ </tex-math></inline-formula>\u0000. The control space under the nonholonomic constraint is defined as a subspace of the tangent space of \u0000<inline-formula> <tex-math>${mathrm {SE}}_{d}$ </tex-math></inline-formula>\u0000, whereas the measurement in the robot coordinate frame is given as the group action of \u0000<inline-formula> <tex-math>${mathrm {SE}}_{d}$ </tex-math></inline-formula>\u0000. Then, a gradient-based method is developed by using the projection of the gradient flow of an objective function onto the control space. By using the method with a clique-based objective function rather than edge-based ones, the designed formation controller is distributed and uses only measurement information in robot coordinate frames and has the best performance of the gradient-based distributed controllers. The proposed method is valid regardless of the dimension of the space, and therefore, it is applicable to not only automatic guided vehicles (AGVs) but also unmanned aerial vehicles (UAVs). Finally, the effectiveness of the method is demonstrated through simulations in 3-D space and an experiment by mobile indoor robots equipped with light detection and ranging (LiDAR).","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2075-2089"},"PeriodicalIF":4.9,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531753","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Optimal Symbolic Controller Synthesis: Application to a Boiler System","authors":"Alireza Najafiyanfar;Babak Tavassoli","doi":"10.1109/TCST.2024.3396731","DOIUrl":"10.1109/TCST.2024.3396731","url":null,"abstract":"Reliable and provably correct performance of control systems in the presence of various types of uncertainties and disturbances are essential objectives that require high integrity of the whole control system. Symbolic control is a candidate method for achieving these objectives which is capable of addressing both robustness and optimality of controller. However, several challenges may arise when the symbolic control method is applied in practice. These include the load of design computations, high memory requirements for design and implementation, and oscillations caused by discretization of inputs. The focus of this work is on treatment of the mentioned challenges during symbolic control synthesis for a boiler system as the central safety critical element in a broad range of industries. To reduce the load of design computations and the required memory while preserving the control precision, a two-stage control scheme is used in which symbolic models with different resolutions are employed. The input oscillations are also reduced by minimizing the changes in the input at the steady state. The performance of the synthesized controllers for several different designs are evaluated and compared during a simulation study. The results demonstrate the suitable performance of the symbolic control method when applied to a boiler system.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2050-2061"},"PeriodicalIF":4.9,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}