Dominic Liao-McPherson;Efe C. Balta;Mohamadreza Afrasiabi;Alisa Rupenyan;Markus Bambach;John Lygeros
{"title":"激光粉末床熔合中的层对层熔池控制","authors":"Dominic Liao-McPherson;Efe C. Balta;Mohamadreza Afrasiabi;Alisa Rupenyan;Markus Bambach;John Lygeros","doi":"10.1109/TCST.2024.3464118","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) processes are flexible and efficient technologies for producing complex geometries. However, ensuring reliability and repeatability is challenging due to the complex physics and various sources of uncertainty in the process. In this work, we investigate closed-loop control of the melt pool dimensions in a 2-D laser powder bed fusion (LPBF) process. We propose a trajectory optimization-based layer-to-layer (L2L) controller based on a linear parameter-varying (LPV) model that adjusts the laser power input to the next layer to track a desired melt pool depth and validate our controller by placing it in closed-loop high-fidelity multilayer smoothed particle hydrodynamics simulator of the 2-D LPBF process. Detailed numerical case studies demonstrate successful regulation of the melt pool depth on brick and overhang geometries and provide first of its kind results on the effectiveness of L2L input optimization for the LPBF process as well as detailed insight into the physics of the controlled process. Computational complexity and process performance results illustrate the method’s effectiveness and provide an outlook for its implementation onto real systems.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"207-218"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer-to-Layer Melt Pool Control in Laser Powder Bed Fusion\",\"authors\":\"Dominic Liao-McPherson;Efe C. Balta;Mohamadreza Afrasiabi;Alisa Rupenyan;Markus Bambach;John Lygeros\",\"doi\":\"10.1109/TCST.2024.3464118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing (AM) processes are flexible and efficient technologies for producing complex geometries. However, ensuring reliability and repeatability is challenging due to the complex physics and various sources of uncertainty in the process. In this work, we investigate closed-loop control of the melt pool dimensions in a 2-D laser powder bed fusion (LPBF) process. We propose a trajectory optimization-based layer-to-layer (L2L) controller based on a linear parameter-varying (LPV) model that adjusts the laser power input to the next layer to track a desired melt pool depth and validate our controller by placing it in closed-loop high-fidelity multilayer smoothed particle hydrodynamics simulator of the 2-D LPBF process. Detailed numerical case studies demonstrate successful regulation of the melt pool depth on brick and overhang geometries and provide first of its kind results on the effectiveness of L2L input optimization for the LPBF process as well as detailed insight into the physics of the controlled process. Computational complexity and process performance results illustrate the method’s effectiveness and provide an outlook for its implementation onto real systems.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 1\",\"pages\":\"207-218\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10703152/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10703152/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Layer-to-Layer Melt Pool Control in Laser Powder Bed Fusion
Additive manufacturing (AM) processes are flexible and efficient technologies for producing complex geometries. However, ensuring reliability and repeatability is challenging due to the complex physics and various sources of uncertainty in the process. In this work, we investigate closed-loop control of the melt pool dimensions in a 2-D laser powder bed fusion (LPBF) process. We propose a trajectory optimization-based layer-to-layer (L2L) controller based on a linear parameter-varying (LPV) model that adjusts the laser power input to the next layer to track a desired melt pool depth and validate our controller by placing it in closed-loop high-fidelity multilayer smoothed particle hydrodynamics simulator of the 2-D LPBF process. Detailed numerical case studies demonstrate successful regulation of the melt pool depth on brick and overhang geometries and provide first of its kind results on the effectiveness of L2L input optimization for the LPBF process as well as detailed insight into the physics of the controlled process. Computational complexity and process performance results illustrate the method’s effectiveness and provide an outlook for its implementation onto real systems.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.