{"title":"Koopman System Approximation-Based Optimal Control of Multiple Mobile Robots","authors":"Qianhong Zhao;Gang Tao","doi":"10.1109/TCST.2024.3522793","DOIUrl":null,"url":null,"abstract":"This article presents a study of the Koopman operator theory and its application to optimal control of a multiple-mobile-robot system. The operator, while operating on a set of observation functions of the state vector of a nonlinear system, produces a set of dynamic equations that, through a dynamic transformation, form a new dynamic system. The Koopman system technique is then applied to the development of a linear or bilinear model approximation of nonlinear utility functions for optimal control of a system of multiple (mobile) robots, by selecting the utility functions as the Koopman system state variables and expressing the set of Koopman variables as the state variables of a linear or bilinear system whose parameters are determined through optimization. An iterative algorithm is developed to estimate the parameters adaptively. Finally, the optimal control problems based on a linear or bilinear approximation model are formulated, by transforming the nonlinear programming problem to a linear programming problem. The above models are simulated on a three-mobile-robot system to verify their performance in both centralized and decentralized versions. From the simulation results, the bilinear model has more capacity to approximate the nonlinear utility functions. Both the centralized and decentralized bilinear approximation model-based control signals can achieve the control objective and are generated fast enough for real-time control.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 3","pages":"963-979"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829714/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a study of the Koopman operator theory and its application to optimal control of a multiple-mobile-robot system. The operator, while operating on a set of observation functions of the state vector of a nonlinear system, produces a set of dynamic equations that, through a dynamic transformation, form a new dynamic system. The Koopman system technique is then applied to the development of a linear or bilinear model approximation of nonlinear utility functions for optimal control of a system of multiple (mobile) robots, by selecting the utility functions as the Koopman system state variables and expressing the set of Koopman variables as the state variables of a linear or bilinear system whose parameters are determined through optimization. An iterative algorithm is developed to estimate the parameters adaptively. Finally, the optimal control problems based on a linear or bilinear approximation model are formulated, by transforming the nonlinear programming problem to a linear programming problem. The above models are simulated on a three-mobile-robot system to verify their performance in both centralized and decentralized versions. From the simulation results, the bilinear model has more capacity to approximate the nonlinear utility functions. Both the centralized and decentralized bilinear approximation model-based control signals can achieve the control objective and are generated fast enough for real-time control.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.