锂离子电池组电池间差异的联合分析与估计

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Preston T. Abadie;Tania R. Jahan;Donald J. Docimo
{"title":"锂离子电池组电池间差异的联合分析与估计","authors":"Preston T. Abadie;Tania R. Jahan;Donald J. Docimo","doi":"10.1109/TCST.2024.3516364","DOIUrl":null,"url":null,"abstract":"This article studies parameter variations in battery packs and estimation of the imbalance propagated by such heterogeneity. Battery pack use has drastically increased in several areas, ranging from personal vehicles to utility-scale power distribution. However, manufacturing tolerances allow for slight variations between battery cells, which can cause uneven current distributions and hinder pack operation. Current work in the literature studies these parameter discrepancies by analyzing their effects or estimating the imbalances, but there are scarce efforts toward combining these tenets of addressing parameter mismatch. This article presents a modeling framework conducive to both analysis and estimation, allowing for investigation of battery dynamics due to unequal parameters, providing analytical representations of the impact of cell mismatch on state and output dynamics. Furthermore, the framework facilitates the development of an online state estimator with reduced computational cost. After parameterization of 66 lithium-ion cells, the framework is used to determine the contributions of multiple types of parameter heterogeneity on output imbalances. The proposed estimator is then validated experimentally, showing how the fewer required calculations benefit estimation runtime. The results show that this estimation scheme is capable of providing estimates within 0.6% state of charge (SOC) of a baseline estimator’s error while providing over a 60% reduction in computational cost.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"760-774"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813457","citationCount":"0","resultStr":"{\"title\":\"A Joint Analysis and Estimation Effort for Cell-to-Cell Variations in Lithium-Ion Battery Packs\",\"authors\":\"Preston T. Abadie;Tania R. Jahan;Donald J. Docimo\",\"doi\":\"10.1109/TCST.2024.3516364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies parameter variations in battery packs and estimation of the imbalance propagated by such heterogeneity. Battery pack use has drastically increased in several areas, ranging from personal vehicles to utility-scale power distribution. However, manufacturing tolerances allow for slight variations between battery cells, which can cause uneven current distributions and hinder pack operation. Current work in the literature studies these parameter discrepancies by analyzing their effects or estimating the imbalances, but there are scarce efforts toward combining these tenets of addressing parameter mismatch. This article presents a modeling framework conducive to both analysis and estimation, allowing for investigation of battery dynamics due to unequal parameters, providing analytical representations of the impact of cell mismatch on state and output dynamics. Furthermore, the framework facilitates the development of an online state estimator with reduced computational cost. After parameterization of 66 lithium-ion cells, the framework is used to determine the contributions of multiple types of parameter heterogeneity on output imbalances. The proposed estimator is then validated experimentally, showing how the fewer required calculations benefit estimation runtime. The results show that this estimation scheme is capable of providing estimates within 0.6% state of charge (SOC) of a baseline estimator’s error while providing over a 60% reduction in computational cost.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"33 2\",\"pages\":\"760-774\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10813457\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10813457/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10813457/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了电池组参数的变化,以及这种非均质性所传播的不平衡的估计。电池组的使用在几个领域急剧增加,从个人车辆到公用事业规模的电力分配。然而,制造公差允许电池单元之间的细微变化,这可能导致电流分布不均匀,阻碍电池组的操作。目前文献中的工作通过分析其影响或估计不平衡来研究这些参数差异,但很少有努力将这些原则结合起来解决参数不匹配。本文提出了一个有利于分析和估计的建模框架,允许研究由于参数不相等而导致的电池动态,提供电池不匹配对状态和输出动态影响的分析表示。此外,该框架有助于开发具有较低计算成本的在线状态估计器。在对66个锂离子电池进行参数化后,利用该框架确定了多种参数异质性对输出不平衡的贡献。然后通过实验验证了所提出的估计器,显示了较少的计算如何使估计运行时受益。结果表明,该估计方案能够在基线估计器误差的0.6%的充电状态(SOC)内提供估计,同时提供超过60%的计算成本降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Joint Analysis and Estimation Effort for Cell-to-Cell Variations in Lithium-Ion Battery Packs
This article studies parameter variations in battery packs and estimation of the imbalance propagated by such heterogeneity. Battery pack use has drastically increased in several areas, ranging from personal vehicles to utility-scale power distribution. However, manufacturing tolerances allow for slight variations between battery cells, which can cause uneven current distributions and hinder pack operation. Current work in the literature studies these parameter discrepancies by analyzing their effects or estimating the imbalances, but there are scarce efforts toward combining these tenets of addressing parameter mismatch. This article presents a modeling framework conducive to both analysis and estimation, allowing for investigation of battery dynamics due to unequal parameters, providing analytical representations of the impact of cell mismatch on state and output dynamics. Furthermore, the framework facilitates the development of an online state estimator with reduced computational cost. After parameterization of 66 lithium-ion cells, the framework is used to determine the contributions of multiple types of parameter heterogeneity on output imbalances. The proposed estimator is then validated experimentally, showing how the fewer required calculations benefit estimation runtime. The results show that this estimation scheme is capable of providing estimates within 0.6% state of charge (SOC) of a baseline estimator’s error while providing over a 60% reduction in computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信