{"title":"Continuous-Time-Constrained Model Predictive Control With a Parallel Solver","authors":"Bo Yang;Zishuo Li;Jiayun Li;Yilin Mo;Jiaqi Yan","doi":"10.1109/TCST.2024.3516386","DOIUrl":null,"url":null,"abstract":"In this article, we address the model predictive control (MPC) problem for continuous-time linear time-invariant systems, with both state and input constraints. For computational efficiency, existing approaches typically discretize both dynamics and constraints, which potentially leads to constraint violations in between discrete-time instants. In contrast, to ensure strict constraint satisfaction, we equivalently replace the differential equations with linear mappings between state, input, and flat output, leveraging the differential flatness property of linear systems. By parameterizing the flat output with piecewise polynomials and employing Markov-Lukács theorem, the original MPC problem is then transformed into a semidefinite programming (SDP) problem, which guarantees the strict constraints satisfaction at all time. Furthermore, exploiting the fact that the proposed SDP contains numerous small-sized positive semidefinite (PSD) matrices as optimization variables, we propose a primal-dual hybrid gradient (PDHG) algorithm that can be efficiently parallelized, expediting the optimization procedure with GPU parallel computing. The simulation and experimental results demonstrate that our approach guarantees rigorous adherence to constraints at all time, and our solver exhibits superior computational speed compared to existing solvers for the proposed SDP problem.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 3","pages":"845-857"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10813429/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we address the model predictive control (MPC) problem for continuous-time linear time-invariant systems, with both state and input constraints. For computational efficiency, existing approaches typically discretize both dynamics and constraints, which potentially leads to constraint violations in between discrete-time instants. In contrast, to ensure strict constraint satisfaction, we equivalently replace the differential equations with linear mappings between state, input, and flat output, leveraging the differential flatness property of linear systems. By parameterizing the flat output with piecewise polynomials and employing Markov-Lukács theorem, the original MPC problem is then transformed into a semidefinite programming (SDP) problem, which guarantees the strict constraints satisfaction at all time. Furthermore, exploiting the fact that the proposed SDP contains numerous small-sized positive semidefinite (PSD) matrices as optimization variables, we propose a primal-dual hybrid gradient (PDHG) algorithm that can be efficiently parallelized, expediting the optimization procedure with GPU parallel computing. The simulation and experimental results demonstrate that our approach guarantees rigorous adherence to constraints at all time, and our solver exhibits superior computational speed compared to existing solvers for the proposed SDP problem.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.