Switched Hybrid Control for Spacecraft Attitude Control With Flexible and Guaranteed Performance

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Jiakun Lei;Tao Meng;Dongyu Li;Kun Wang;Weijia Wang;Zhonghe Jin
{"title":"Switched Hybrid Control for Spacecraft Attitude Control With Flexible and Guaranteed Performance","authors":"Jiakun Lei;Tao Meng;Dongyu Li;Kun Wang;Weijia Wang;Zhonghe Jin","doi":"10.1109/TCST.2024.3508580","DOIUrl":null,"url":null,"abstract":"This article addresses the challenge of achieving spacecraft attitude control with guaranteed performance while significantly reducing actuator activation frequency. To tackle this issue, we propose the concept of switched hybrid control and further integrate it with a modified prescribed-performance control (PPC) scheme. To enhance the robustness of the PPC control, we introduce the concept of a zeroing barrier function (ZBF). Coupled with a projection-operator-based modification dynamics, this approach assesses and adjusts the envelope in response to the risk of violating performance envelope constraints. Subsequently, a control mode switching strategy, considering the safety of the performance envelope and the system’s motion velocity, is proposed. This strategy automatically switches between intermittent and continuous control modes to select an appropriate control command execution strategy, thereby reducing actuator activation frequency under proper circumstances. Furthermore, we demonstrate the boundedness of the closed-loop system for different control modes and establish a uniform upper bound of the Lyapunov certificate throughout the entire time domain, thereby proving the overall uniformly ultimately bounded (UUB) of the system. Finally, numerical simulation results are presented to validate the effectiveness of the proposed control scheme.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"582-596"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817128/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article addresses the challenge of achieving spacecraft attitude control with guaranteed performance while significantly reducing actuator activation frequency. To tackle this issue, we propose the concept of switched hybrid control and further integrate it with a modified prescribed-performance control (PPC) scheme. To enhance the robustness of the PPC control, we introduce the concept of a zeroing barrier function (ZBF). Coupled with a projection-operator-based modification dynamics, this approach assesses and adjusts the envelope in response to the risk of violating performance envelope constraints. Subsequently, a control mode switching strategy, considering the safety of the performance envelope and the system’s motion velocity, is proposed. This strategy automatically switches between intermittent and continuous control modes to select an appropriate control command execution strategy, thereby reducing actuator activation frequency under proper circumstances. Furthermore, we demonstrate the boundedness of the closed-loop system for different control modes and establish a uniform upper bound of the Lyapunov certificate throughout the entire time domain, thereby proving the overall uniformly ultimately bounded (UUB) of the system. Finally, numerical simulation results are presented to validate the effectiveness of the proposed control scheme.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信